A Multi-operator Ensemble LSHADE with Restart and Local Search Mechanisms for Single-objective Optimization
- URL: http://arxiv.org/abs/2409.15994v1
- Date: Tue, 24 Sep 2024 11:49:08 GMT
- Title: A Multi-operator Ensemble LSHADE with Restart and Local Search Mechanisms for Single-objective Optimization
- Authors: Dikshit Chauhan, Anupam Trivedi, Shivani,
- Abstract summary: mLSHADE-RL is an enhanced version of LSHADE-cnEpSin, one of the winners of the CEC 2017 competition in single-objective optimization.
Three mutation strategies such as DE/current-to-pbest-weight/1 with archive, DE/current-to-pbest/1 without archive, and DE/current-to-ordpbest-weight/1 are integrated in the original LSHADE-cnEpSin.
LSHADE-cnEpSin is tested on 30 dimensions in the CEC 2024 competition on single objective bound constrained optimization.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, multi-operator and multi-method algorithms have succeeded, encouraging their combination within single frameworks. Despite promising results, there remains room for improvement as only some evolutionary algorithms (EAs) consistently excel across all optimization problems. This paper proposes mLSHADE-RL, an enhanced version of LSHADE-cnEpSin, which is one of the winners of the CEC 2017 competition in real-parameter single-objective optimization. mLSHADE-RL integrates multiple EAs and search operators to improve performance further. Three mutation strategies such as DE/current-to-pbest-weight/1 with archive, DE/current-to-pbest/1 without archive, and DE/current-to-ordpbest-weight/1 are integrated in the original LSHADE-cnEpSin. A restart mechanism is also proposed to overcome the local optima tendency. Additionally, a local search method is applied in the later phase of the evolutionary procedure to enhance the exploitation capability of mLSHADE-RL. mLSHADE-RL is tested on 30 dimensions in the CEC 2024 competition on single objective bound constrained optimization, demonstrating superior performance over other state-of-the-art algorithms in producing high-quality solutions across various optimization scenarios.
Related papers
- Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
Large Language Model (LLM) based multi-agent systems (MAS) show remarkable potential in collaborative problem-solving.
Yet they still face critical challenges: low communication efficiency, poor scalability, and a lack of effective parameter-updating optimization methods.
We present Optima, a novel framework that addresses these issues by significantly enhancing both communication efficiency and task effectiveness.
arXiv Detail & Related papers (2024-10-10T17:00:06Z) - LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
The framework combines Monte Carlo Tree Search (MCTS) with iterative Self-Refine to optimize the reasoning path.
The framework has been tested on general and advanced benchmarks, showing superior performance in terms of search efficiency and problem-solving capability.
arXiv Detail & Related papers (2024-10-03T18:12:29Z) - Search-Based LLMs for Code Optimization [16.843870288512363]
Code written by developers usually suffers from efficiency problems and contain various performance bugs.
Recent work regards the task as a sequence generation problem, and resorts to deep learning (DL) techniques such as large language models (LLMs)
We propose a search-based LLMs framework named SBLLM that enables iterative refinement and discovery of improved optimization methods.
arXiv Detail & Related papers (2024-08-22T06:59:46Z) - Iterative or Innovative? A Problem-Oriented Perspective for Code Optimization [81.88668100203913]
Large language models (LLMs) have demonstrated strong capabilities in solving a wide range of programming tasks.
In this paper, we explore code optimization with a focus on performance enhancement, specifically aiming to optimize code for minimal execution time.
arXiv Detail & Related papers (2024-06-17T16:10:10Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
offline preference optimization is a key method for enhancing and controlling the quality of Large Language Model (LLM) outputs.
We perform objective discovery to automatically discover new state-of-the-art preference optimization algorithms without (expert) human intervention.
Experiments demonstrate the state-of-the-art performance of DiscoPOP, a novel algorithm that adaptively blends logistic and exponential losses.
arXiv Detail & Related papers (2024-06-12T16:58:41Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.
To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.
Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - Large Language Models as Evolutionary Optimizers [37.92671242584431]
We present the first study on large language models (LLMs) as evolutionarys.
The main advantage is that it requires minimal domain knowledge and human efforts, as well as no additional training of the model.
We also study the effectiveness of the self-adaptation mechanism in evolutionary search.
arXiv Detail & Related papers (2023-10-29T15:44:52Z) - Sample-Efficient Multi-Agent RL: An Optimization Perspective [103.35353196535544]
We study multi-agent reinforcement learning (MARL) for the general-sum Markov Games (MGs) under the general function approximation.
We introduce a novel complexity measure called the Multi-Agent Decoupling Coefficient (MADC) for general-sum MGs.
We show that our algorithm provides comparable sublinear regret to the existing works.
arXiv Detail & Related papers (2023-10-10T01:39:04Z) - An Improved LSHADE-RSP Algorithm with the Cauchy Perturbation:
iLSHADE-RSP [9.777183117452235]
The technique can increase the exploration by adopting the long-tailed property of the Cauchy distribution.
Compared to the previous approaches, the proposed approach perturbs a target vector instead of a mutant vector based on a jumping rate.
A set of 30 different and difficult optimization problems is used to evaluate the optimization performance of the improved LSHADE-RSP.
arXiv Detail & Related papers (2020-06-04T00:03:34Z) - An Eigenspace Divide-and-Conquer Approach for Large-Scale Optimization [9.501723707464432]
Divide-and-conquer (DC) evolutionary algorithms have achieved notable success in dealing with large-scale optimization problems.
This study proposes an eigenspace divide-and-conquer (EDC) approach.
arXiv Detail & Related papers (2020-04-05T07:29:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.