Large Language Models as Evolutionary Optimizers
- URL: http://arxiv.org/abs/2310.19046v3
- Date: Fri, 26 Apr 2024 06:24:59 GMT
- Title: Large Language Models as Evolutionary Optimizers
- Authors: Shengcai Liu, Caishun Chen, Xinghua Qu, Ke Tang, Yew-Soon Ong,
- Abstract summary: We present the first study on large language models (LLMs) as evolutionarys.
The main advantage is that it requires minimal domain knowledge and human efforts, as well as no additional training of the model.
We also study the effectiveness of the self-adaptation mechanism in evolutionary search.
- Score: 37.92671242584431
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evolutionary algorithms (EAs) have achieved remarkable success in tackling complex combinatorial optimization problems. However, EAs often demand carefully-designed operators with the aid of domain expertise to achieve satisfactory performance. In this work, we present the first study on large language models (LLMs) as evolutionary combinatorial optimizers. The main advantage is that it requires minimal domain knowledge and human efforts, as well as no additional training of the model. This approach is referred to as LLM-driven EA (LMEA). Specifically, in each generation of the evolutionary search, LMEA instructs the LLM to select parent solutions from current population, and perform crossover and mutation to generate offspring solutions. Then, LMEA evaluates these new solutions and include them into the population for the next generation. LMEA is equipped with a self-adaptation mechanism that controls the temperature of the LLM. This enables it to balance between exploration and exploitation and prevents the search from getting stuck in local optima. We investigate the power of LMEA on the classical traveling salesman problems (TSPs) widely used in combinatorial optimization research. Notably, the results show that LMEA performs competitively to traditional heuristics in finding high-quality solutions on TSP instances with up to 20 nodes. Additionally, we also study the effectiveness of LLM-driven crossover/mutation and the self-adaptation mechanism in evolutionary search. In summary, our results reveal the great potentials of LLMs as evolutionary optimizers for solving combinatorial problems. We hope our research shall inspire future explorations on LLM-driven EAs for complex optimization challenges.
Related papers
- Deep Insights into Automated Optimization with Large Language Models and Evolutionary Algorithms [3.833708891059351]
Large Language Models (LLMs) and Evolutionary Algorithms (EAs) offer promising new approach to overcome limitations and make optimization more automated.
LLMs act as dynamic agents that can generate, refine, and interpret optimization strategies.
EAs efficiently explore complex solution spaces through evolutionary operators.
arXiv Detail & Related papers (2024-10-28T09:04:49Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - Large Language Models as Surrogate Models in Evolutionary Algorithms: A Preliminary Study [5.6787965501364335]
Surrogate-assisted selection is a core step in evolutionary algorithms to solve expensive optimization problems.
Traditionally, this has relied on conventional machine learning methods, leveraging historical evaluated evaluations to predict the performance of new solutions.
In this work, we propose a novel surrogate model based purely on LLM inference capabilities, eliminating the need for training.
arXiv Detail & Related papers (2024-06-15T15:54:00Z) - Autonomous Multi-Objective Optimization Using Large Language Model [28.14607885386587]
Multi-objective optimization problems (MOPs) are ubiquitous in real-world applications.
We propose a new framework that autonomously designs EA operators for solving MOPs.
arXiv Detail & Related papers (2024-06-13T10:35:16Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
We propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions.
Our experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, Self-Exploring Language Models (SELM) significantly boosts the performance on instruction-following benchmarks.
arXiv Detail & Related papers (2024-05-29T17:59:07Z) - Large Language Model-Aided Evolutionary Search for Constrained Multiobjective Optimization [15.476478159958416]
We employ a large language model (LLM) to enhance evolutionary search for solving constrained multi-objective optimization problems.
Our aim is to speed up the convergence of the evolutionary population.
arXiv Detail & Related papers (2024-05-09T13:44:04Z) - RLEMMO: Evolutionary Multimodal Optimization Assisted By Deep Reinforcement Learning [8.389454219309837]
multimodal optimization problems (MMOP) requires finding all optimal solutions, which is challenging in limited function evaluations.
We propose RLEMMO, a Meta-Black-Box Optimization framework, which maintains a population of solutions and incorporates a reinforcement learning agent.
With a novel reward mechanism that encourages both quality and diversity, RLEMMO can be effectively trained using a policy gradient algorithm.
arXiv Detail & Related papers (2024-04-12T05:02:49Z) - Bridging Evolutionary Algorithms and Reinforcement Learning: A Comprehensive Survey on Hybrid Algorithms [50.91348344666895]
Evolutionary Reinforcement Learning (ERL) integrates Evolutionary Algorithms (EAs) and Reinforcement Learning (RL) for optimization.
This survey offers a comprehensive overview of the diverse research branches in ERL.
arXiv Detail & Related papers (2024-01-22T14:06:37Z) - Connecting Large Language Models with Evolutionary Algorithms Yields
Powerful Prompt Optimizers [70.18534453485849]
EvoPrompt is a framework for discrete prompt optimization.
It borrows the idea of evolutionary algorithms (EAs) as they exhibit good performance and fast convergence.
It significantly outperforms human-engineered prompts and existing methods for automatic prompt generation.
arXiv Detail & Related papers (2023-09-15T16:50:09Z) - Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and
Research Opportunities [63.258517066104446]
Reinforcement learning integrated as a component in the evolutionary algorithm has demonstrated superior performance in recent years.
We discuss the RL-EA integration method, the RL-assisted strategy adopted by RL-EA, and its applications according to the existing literature.
In the applications of RL-EA section, we also demonstrate the excellent performance of RL-EA on several benchmarks and a range of public datasets.
arXiv Detail & Related papers (2023-08-25T15:06:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.