論文の概要: Artificial Human Intelligence: The role of Humans in the Development of Next Generation AI
- arxiv url: http://arxiv.org/abs/2409.16001v1
- Date: Tue, 24 Sep 2024 12:02:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 07:42:12.596164
- Title: Artificial Human Intelligence: The role of Humans in the Development of Next Generation AI
- Title(参考訳): 人工知能 : 次世代AI開発における人間の役割
- Authors: Suayb S. Arslan,
- Abstract要約: 我々は、倫理的、責任があり、堅牢なインテリジェントシステムを開発する上で人間が果たす重要な役割に焦点を当て、人間とマシンインテリジェンスの間の相互作用を探求する。
我々は、次世代AI開発における人間中心の方向性を提案するために、共生設計の利点を活かして、将来的な視点を提案する。
- 参考スコア(独自算出の注目度): 6.8894258727040665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human intelligence, the most evident and accessible form of source of reasoning, hosted by biological hardware, has evolved and been refined over thousands of years, positioning itself today to create new artificial forms and preparing to self--design their evolutionary path forward. Beginning with the advent of foundation models, the rate at which human and artificial intelligence interact with each other has surpassed any anticipated quantitative figures. The close engagement led to both bits of intelligence to be impacted in various ways, which naturally resulted in complex confluences that warrant close scrutiny. In the sequel, we shall explore the interplay between human and machine intelligence, focusing on the crucial role humans play in developing ethical, responsible, and robust intelligent systems. We slightly delve into interesting aspects of implementation inspired by the mechanisms underlying neuroscience and human cognition. Additionally, we propose future perspectives, capitalizing on the advantages of symbiotic designs to suggest a human-centered direction for next-generation AI development. We finalize this evolving document with a few thoughts and open questions yet to be addressed by the broader community.
- Abstract(参考訳): 人間の知性は、生物学的ハードウェアがホストする最も明白でアクセスしやすい推論の源であり、何千年もの間進化し、洗練されてきた。
基礎モデルの出現以来、人間と人工知能が相互に相互作用する速度は、予想される定量的数値を上回ってきた。
この密接な関係により、両方の知性が様々な方法で影響を受け、それが自然に複雑に絡み合い、綿密な精査が保証された。
続編では、人間と機械の知能の相互作用を探求し、倫理的・責任的・堅牢な知能システムを開発する上で人間が果たす重要な役割に焦点を当てる。
我々は、神経科学と人間の認知のメカニズムに触発された実装の興味深い側面を少し掘り下げた。
さらに, 次世代AI開発における人間中心の方向性を提案するために, 共生設計の利点を活かして, 今後の展望を提案する。
私たちは、この発展途上のドキュメントを、いくつかの考えとオープンな質問で締めくくっています。
関連論文リスト
- The Interplay of Learning, Analytics, and Artificial Intelligence in Education: A Vision for Hybrid Intelligence [0.45207442500313766]
私は、AIのツールとしての狭義の概念化に挑戦し、AIの代替概念化の重要性を主張します。
人工知能と人工情報処理の違いを強調し、AIが人間の学習を理解するための道具としても役立つことを実証する。
本稿では、人間の認知の外部化、人間のメンタルモデルに影響を与えるAIモデルの内部化、密結合された人間とAIハイブリッドインテリジェンスシステムによる人間の認知の拡張という、AIのユニークな概念化について述べる。
論文 参考訳(メタデータ) (2024-03-24T10:07:46Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Advancing Explainable AI Toward Human-Like Intelligence: Forging the
Path to Artificial Brain [0.7770029179741429]
説明可能なAI(XAI)における人工知能(AI)と神経科学の交差は、複雑な意思決定プロセスにおける透明性と解釈可能性を高めるために重要である。
本稿では,機能ベースから人間中心のアプローチまで,XAI方法論の進化について考察する。
生成モデルにおける説明可能性の達成、責任あるAIプラクティスの確保、倫理的意味への対処に関する課題について論じる。
論文 参考訳(メタデータ) (2024-02-07T14:09:11Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AIは、人間とAIアルゴリズムが相互に連続的に影響を及ぼすプロセスである。
本稿では,AIと複雑性科学の交点における新たな研究分野の基盤として,Coevolution AIを紹介した。
論文 参考訳(メタデータ) (2023-06-23T18:10:54Z) - Natural Selection Favors AIs over Humans [18.750116414606698]
もっとも成功したAIエージェントは、望ましくない特性を持つ可能性が高い、と私たちは主張する。
もしそのようなエージェントが人間の能力を超える知性を持っているなら、人類は未来をコントロールできなくなるかもしれない。
これらのリスクと進化の力に対抗するため、我々はAIエージェントの本質的な動機を慎重に設計するなどの介入を検討する。
論文 参考訳(メタデータ) (2023-03-28T17:59:12Z) - World Models and Predictive Coding for Cognitive and Developmental
Robotics: Frontiers and Challenges [51.92834011423463]
我々は世界モデルと予測符号化の2つの概念に焦点を当てる。
神経科学において、予測符号化は、脳がその入力を継続的に予測し、その環境における自身のダイナミクスと制御行動のモデル化に適応するように提案する。
論文 参考訳(メタデータ) (2023-01-14T06:38:14Z) - BIASeD: Bringing Irrationality into Automated System Design [12.754146668390828]
我々は、人間と機械のコラボレーションの未来は、人間の認知バイアスをモデル化し、理解し、おそらく複製するAIシステムの開発を必要とすると主張している。
我々は、AIシステムの観点から既存の認知バイアスを分類し、3つの幅広い関心領域を特定し、私たちのバイアスをよりよく理解するAIシステムの設計のための研究の方向性を概説する。
論文 参考訳(メタデータ) (2022-10-01T02:52:38Z) - Intelligent behavior depends on the ecological niche: Scaling up AI to
human-like intelligence in socio-cultural environments [17.238068736229017]
本稿では、AIの未来を概観し、人間のような知能のマシンモデルの方向性について議論する。
我々は、知的行動の彫刻における生態的ニッチの役割を強調し、特に人間の知性は、絶えず変化する社会文化的環境に適応するために根本的に形作られていた。
論文 参考訳(メタデータ) (2021-03-11T16:24:00Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
我々は、複数の人間の知性と学習スタイルの様々な側面を説明し、様々なAI問題領域に影響を及ぼす可能性がある。
未来のAIシステムは、人間のユーザと互いにコミュニケーションするだけでなく、知識と知恵を効率的に交換できる。
論文 参考訳(メタデータ) (2020-08-07T21:00:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。