論文の概要: VascX Models: Model Ensembles for Retinal Vascular Analysis from Color Fundus Images
- arxiv url: http://arxiv.org/abs/2409.16016v2
- Date: Fri, 1 Nov 2024 17:44:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 18:04:33.303348
- Title: VascX Models: Model Ensembles for Retinal Vascular Analysis from Color Fundus Images
- Title(参考訳): VascXモデル:カラーファウンダス画像からの網膜血管解析のためのモデルアンサンブル
- Authors: Jose Vargas Quiros, Bart Liefers, Karin van Garderen, Jeroen Vermeulen, Eyened Reading Center, Sinergia Consortium, Caroline Klaver,
- Abstract要約: VascXモデル(VascX model)は、カラーフルート画像から網膜血管を解析するためのモデルアンサンブルのセットである。
モデルでは、データセット、画像品質レベル、解剖学的領域間でのセグメンテーション性能が優れていた。
モデルによって生成された正確な血管パラメータは、眼の内外における病気のパターンを識別するための出発点として機能する。
- 参考スコア(独自算出の注目度): 1.0356065101685448
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce VascX models, a comprehensive set of model ensembles for analyzing retinal vasculature from color fundus images (CFIs). Annotated CFIs were aggregated from public datasets . Additional CFIs, mainly from the population-based Rotterdam Study were annotated by graders for arteries and veins at pixel level, resulting in a dataset diverse in patient demographics and imaging conditions. VascX models demonstrated superior segmentation performance across datasets, image quality levels, and anatomic regions when compared to existing, publicly available models, likely due to the increased size and variety of our training set. Important improvements were observed in artery-vein and disc segmentation performance, particularly in segmentations of these structures on CFIs of intermediate quality, common in large cohorts and clinical datasets. Importantly, these improvements translated into significantly more accurate vascular features when we compared features extracted from VascX segmentation masks with features extracted from segmentation masks generated by previous models. With VascX models we provide a robust, ready-to-use set of model ensembles and inference code aimed at simplifying the implementation and enhancing the quality of automated retinal vasculature analyses. The precise vessel parameters generated by the model can serve as starting points for the identification of disease patterns in and outside of the eye.
- Abstract(参考訳): 本稿では,カラーファンドス画像(CFI)から網膜血管を解析するための包括的モデルアンサンブルであるVascXモデルを紹介する。
アノテーション付きCFIは、公開データセットから集約された。
人口を基盤とするロッテルダム研究(Rotterdam Study)から追加のCFIは、ピクセルレベルの動脈や静脈のグレーダーによって注釈され、患者人口と画像条件に多様なデータセットが得られた。
VascXモデルは、既存の公開モデルと比較してデータセット、画像品質レベル、解剖学的領域のセグメンテーション性能が優れていることを示した。
動脈・静脈・椎間板のセグメンテーション性能,特に大コホートや臨床データセットに共通する中品質CFIのセグメンテーションにおいて重要な改善が認められた。
重要な点として,これらの改善は,VascXセグメンテーションマスクから抽出した特徴と,以前のモデルで生成したセグメンテーションマスクから抽出した特徴とを比較すると,より正確な血管機能に変換された。
VascXモデルでは、実装を簡素化し、自動網膜血管解析の品質を向上させることを目的とした、堅牢で実用性の高いモデルアンサンブルと推論コードを提供しています。
モデルによって生成された正確な血管パラメータは、眼の内外における病気のパターンを識別するための出発点として機能する。
関連論文リスト
- Unleashing the Potential of the Diffusion Model in Few-shot Semantic Segmentation [56.87049651707208]
セマンティックはインコンテクストタスクへと発展し、一般化的セグメンテーションモデルを評価する上で重要な要素となった。
我々の最初の焦点は、クエリイメージとサポートイメージの相互作用を容易にする方法を理解することであり、その結果、自己注意フレームワーク内のKV融合法が提案される。
そこで我々はDiffewSというシンプルで効果的なフレームワークを構築し,従来の潜在拡散モデルの生成フレームワークを最大限に保持する。
論文 参考訳(メタデータ) (2024-10-03T10:33:49Z) - KLDD: Kalman Filter based Linear Deformable Diffusion Model in Retinal Image Segmentation [51.03868117057726]
本稿では,網膜血管分割のためのKLDDモデルを提案する。
我々のモデルは、変形可能な畳み込みの柔軟な受容場を利用して、分割を反復的に洗練する拡散過程を用いる。
実験は網膜基底画像データセット(DRIVE,CHASE_DB1)とOCTA-500データセットの3mm,6mmで評価された。
論文 参考訳(メタデータ) (2024-09-19T14:21:38Z) - Benchmarking Retinal Blood Vessel Segmentation Models for Cross-Dataset and Cross-Disease Generalization [5.237321836999284]
公開されているFIVESファウンダスイメージデータセット上で,5つの公開モデルをトレーニングし,評価する。
画像の品質がセグメンテーションの結果を決定する重要な要因であることがわかった。
論文 参考訳(メタデータ) (2024-06-21T09:12:34Z) - The Importance of Downstream Networks in Digital Pathology Foundation Models [1.689369173057502]
162のアグリゲーションモデル構成を持つ3つの異なるデータセットにまたがる7つの特徴抽出モデルを評価する。
多くの特徴抽出器モデルの性能は顕著に類似していることが判明した。
論文 参考訳(メタデータ) (2023-11-29T16:54:25Z) - Certification of Deep Learning Models for Medical Image Segmentation [44.177565298565966]
ランダムな平滑化と拡散モデルに基づく医用画像のための認定セグメンテーションベースラインを初めて提示する。
この結果から,拡散確率モデルをデノナイズするパワーを活用することで,ランダムな平滑化の限界を克服できることが示唆された。
論文 参考訳(メタデータ) (2023-10-05T16:40:33Z) - Boosting Dermatoscopic Lesion Segmentation via Diffusion Models with
Visual and Textual Prompts [27.222844687360823]
我々は、病変特異的な視覚的およびテキスト的プロンプトを用いた制御フローを追加して、生成モデルの最新の進歩に適応する。
SSIM画像の品質測定では9%以上,Dice係数は5%以上向上する。
論文 参考訳(メタデータ) (2023-10-04T15:43:26Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
血管セグメンテーションは、冠動脈狭窄、網膜血管疾患、脳動脈瘤などの多くの医学的応用において重要である。
コントラストに敏感なマルチスケールアフィニティアプローチを用いて,幾何学的手法と画素単位のセグメンテーション特徴を連成的にモデル化する新しいアプローチであるAFNを提案する。
論文 参考訳(メタデータ) (2022-11-12T05:39:17Z) - IterMiUnet: A lightweight architecture for automatic blood vessel
segmentation [10.538564380139483]
本稿では,新しい軽量畳み込み型セグメンテーションモデルであるIterMiUnetを提案する。
MiUnetモデルのエンコーダ・デコーダ構造を組み込むことで、その非常にパラメトリズドな性質を克服する。
提案モデルは,多くの疾患の早期診断のためのツールとして活用される可能性が大きい。
論文 参考訳(メタデータ) (2022-08-02T14:33:14Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。