論文の概要: Certification of Deep Learning Models for Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2310.03664v1
- Date: Thu, 5 Oct 2023 16:40:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-06 15:22:39.547408
- Title: Certification of Deep Learning Models for Medical Image Segmentation
- Title(参考訳): 医用画像分割のための深層学習モデルの認定
- Authors: Othmane Laousy, Alexandre Araujo, Guillaume Chassagnon, Nikos
Paragios, Marie-Pierre Revel, Maria Vakalopoulou
- Abstract要約: ランダムな平滑化と拡散モデルに基づく医用画像のための認定セグメンテーションベースラインを初めて提示する。
この結果から,拡散確率モデルをデノナイズするパワーを活用することで,ランダムな平滑化の限界を克服できることが示唆された。
- 参考スコア(独自算出の注目度): 44.177565298565966
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In medical imaging, segmentation models have known a significant improvement
in the past decade and are now used daily in clinical practice. However,
similar to classification models, segmentation models are affected by
adversarial attacks. In a safety-critical field like healthcare, certifying
model predictions is of the utmost importance. Randomized smoothing has been
introduced lately and provides a framework to certify models and obtain
theoretical guarantees. In this paper, we present for the first time a
certified segmentation baseline for medical imaging based on randomized
smoothing and diffusion models. Our results show that leveraging the power of
denoising diffusion probabilistic models helps us overcome the limits of
randomized smoothing. We conduct extensive experiments on five public datasets
of chest X-rays, skin lesions, and colonoscopies, and empirically show that we
are able to maintain high certified Dice scores even for highly perturbed
images. Our work represents the first attempt to certify medical image
segmentation models, and we aspire for it to set a foundation for future
benchmarks in this crucial and largely uncharted area.
- Abstract(参考訳): 医療画像では、セグメンテーションモデルは過去10年で著しく改善し、現在臨床で毎日使用されている。
しかし、分類モデルと同様、セグメンテーションモデルも敵攻撃の影響を受けている。
医療のような安全クリティカルな分野では、モデル予測の検証が最も重要です。
ランダムな平滑化は最近導入され、モデルの認証と理論的保証を得るためのフレームワークを提供する。
本稿では,ランダムな平滑化と拡散モデルに基づく医用画像のための認定セグメンテーションベースラインを初めて提示する。
この結果から,拡散確率モデルをデノナイズすることで,ランダムな平滑化の限界を克服できることが示唆された。
胸部X線,皮膚病変,大腸の5つの公的データセットについて広範な実験を行い,高精細度画像においても高いDiceスコアを維持できることを実証的に示す。
私たちの研究は、医用画像のセグメンテーションモデルを認定する最初の試みであり、この重要かつ大半がチャージされていない領域における将来のベンチマークの基礎を築きたいと考えています。
関連論文リスト
- On the Out of Distribution Robustness of Foundation Models in Medical
Image Segmentation [47.95611203419802]
視覚と言語の基礎は、様々な自然画像とテキストデータに基づいて事前訓練されており、有望なアプローチとして現れている。
一般化性能を,同じ分布データセット上で微調整した後,事前学習した各種モデルの未確認領域と比較した。
さらに,凍結モデルに対する新しいベイズ不確実性推定法を開発し,分布外データに基づくモデルの性能評価指標として利用した。
論文 参考訳(メタデータ) (2023-11-18T14:52:10Z) - From CNN to Transformer: A Review of Medical Image Segmentation Models [7.3150850275578145]
医用画像セグメンテーションのための深層学習が主流となっている。
本稿では,近年最も代表的な4つの医用画像セグメンテーションモデルについて調査する。
理論的にこれらのモデルの特徴を解析し、2つのベンチマークデータセット上でそれらの性能を定量的に評価する。
論文 参考訳(メタデータ) (2023-08-10T02:48:57Z) - Empirical Analysis of a Segmentation Foundation Model in Prostate
Imaging [9.99042549094606]
医療画像セグメンテーションのための基盤モデルUniverSegについて考察する。
本研究では,前立腺画像の文脈における経験的評価研究を行い,従来のタスク固有セグメンテーションモデルの訓練手法と比較する。
論文 参考訳(メタデータ) (2023-07-06T20:00:52Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
セグメンテーションモデルは敵の摂動に弱いため、医療や自動運転といった重要な意思決定システムでの使用を妨げます。
近年,理論的保証を得るためにガウス雑音を入力に加えることにより,セグメント化予測のランダム化が提案されている。
本稿では,ランダムな平滑化と拡散モデルを組み合わせたセグメンテーション予測の問題に対処する。
論文 参考訳(メタデータ) (2023-06-16T16:30:39Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
我々は,グループ洞察の分布を学習することで,複数の可算出力を生成する単一拡散モデルに基づくアプローチを提案する。
提案モデルでは,拡散の固有のサンプリングプロセスを利用してセグメンテーションマスクの分布を生成する。
その結果,提案手法は既存の最先端曖昧なセグメンテーションネットワークよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-04-10T17:58:22Z) - Analysing the effectiveness of a generative model for semi-supervised
medical image segmentation [23.898954721893855]
自動セグメンテーションにおける最先端技術は、U-Netのような差別モデルを用いて、教師付き学習のままである。
半教師付き学習(SSL)は、より堅牢で信頼性の高いモデルを得るために、重複のないデータの豊富さを活用する。
セマンティックGANのような深層生成モデルは、医療画像分割問題に取り組むための真に実行可能な代替手段である。
論文 参考訳(メタデータ) (2022-11-03T15:19:59Z) - Adapting Pretrained Vision-Language Foundational Models to Medical
Imaging Domains [3.8137985834223502]
臨床の文脈を忠実に描写する医療画像の生成モデルを構築することは、医療データセットの不明瞭さを軽減するのに役立つ。
安定拡散パイプラインのサブコンポーネントを探索し、モデルを微調整して医用画像を生成する。
我々の最良の性能モデルは、安定な拡散ベースラインを改善し、合成ラジオグラフィ画像に現実的な異常を挿入するように条件付けすることができる。
論文 参考訳(メタデータ) (2022-10-09T01:43:08Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
臨床皮膚画像から機械学習に基づく悪性度予測と病変の同定を検討する。
まず, サブタイプや悪性度に関わらず画像に存在するすべての病変を同定し, その悪性度を推定し, 凝集により, 画像レベルの悪性度も生成する。
論文 参考訳(メタデータ) (2021-04-02T20:52:05Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。