論文の概要: Adversarial Watermarking for Face Recognition
- arxiv url: http://arxiv.org/abs/2409.16056v1
- Date: Tue, 24 Sep 2024 12:58:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 05:56:20.061612
- Title: Adversarial Watermarking for Face Recognition
- Title(参考訳): 顔認識のための敵対的透かし
- Authors: Yuguang Yao, Anil Jain, Sijia Liu,
- Abstract要約: 顔認識システムでは、データの完全性とセキュリティを確保する上で、透かしが重要な役割を果たす。
顔認識モデルに対する透かしと敵攻撃の相互作用について検討する。
提案手法は,顔のマッチング精度を67.2%削減する。
- 参考スコア(独自算出の注目度): 17.11307036255593
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Watermarking is an essential technique for embedding an identifier (i.e., watermark message) within digital images to assert ownership and monitor unauthorized alterations. In face recognition systems, watermarking plays a pivotal role in ensuring data integrity and security. However, an adversary could potentially interfere with the watermarking process, significantly impairing recognition performance. We explore the interaction between watermarking and adversarial attacks on face recognition models. Our findings reveal that while watermarking or input-level perturbation alone may have a negligible effect on recognition accuracy, the combined effect of watermarking and perturbation can result in an adversarial watermarking attack, significantly degrading recognition performance. Specifically, we introduce a novel threat model, the adversarial watermarking attack, which remains stealthy in the absence of watermarking, allowing images to be correctly recognized initially. However, once watermarking is applied, the attack is activated, causing recognition failures. Our study reveals a previously unrecognized vulnerability: adversarial perturbations can exploit the watermark message to evade face recognition systems. Evaluated on the CASIA-WebFace dataset, our proposed adversarial watermarking attack reduces face matching accuracy by 67.2% with an $\ell_\infty$ norm-measured perturbation strength of ${2}/{255}$ and by 95.9% with a strength of ${4}/{255}$.
- Abstract(参考訳): 透かしは、識別子(すなわち透かしメッセージ)をデジタルイメージに埋め込んで所有権を主張し、不正な変更を監視するための重要な技術である。
顔認識システムでは、データの完全性とセキュリティを確保する上で、透かしが重要な役割を果たす。
しかし、敵は透かし処理を妨害し、認識性能を著しく損なう可能性がある。
顔認識モデルに対する透かしと敵攻撃の相互作用について検討する。
以上の結果から,透かしや入力レベルの摂動だけでは認識精度に悪影響を及ぼす可能性があるが,透かしと摂動の複合効果は相反する透かし攻撃を引き起こし,認識性能を著しく低下させる可能性が示唆された。
具体的には,新しい脅威モデルである逆透かし攻撃を導入し,透かしのない状態ではステルス状態のままであり,画像が最初に正しく認識されるようにした。
しかし、一旦透かしが適用されると、攻撃が活性化され、認識に失敗する。
敵対的摂動は、顔認識システムを避けるために透かしメッセージを利用することができる。
CASIA-WebFaceデータセットに基づいて,提案した対面透かし攻撃は,$$\ell_\infty$のノルム測定摂動強度を${2}/{255}$で67.2%,${4}/{255}$で95.9%削減する。
関連論文リスト
- LampMark: Proactive Deepfake Detection via Training-Free Landmark Perceptual Watermarks [7.965986856780787]
本稿では,LampMarkを略して,新しい学習自由なランドマークとして紹介する。
まず、Deepfake操作の構造に敏感な特性を分析し、セキュアで機密性の高い変換パイプラインを考案する。
本稿では,保護対象画像に関する透かしを認識不能に埋め込み,抽出するエンド・ツー・エンドの透かしフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-26T08:24:56Z) - An undetectable watermark for generative image models [65.31658824274894]
生成画像モデルに対する検出不能な最初の透かし方式を提案する。
特に、検出不能な透かしは、効率的に計算可能なメートル法で画質を劣化させることはない。
提案手法は,擬似乱数誤り訂正符号を用いて拡散モデルの初期潜時間を選択する。
論文 参考訳(メタデータ) (2024-10-09T18:33:06Z) - Social Media Authentication and Combating Deepfakes using Semi-fragile Invisible Image Watermarking [6.246098300155482]
本稿では,メディア認証のために,見えない秘密メッセージを実画像に埋め込む半フレジブルな画像透かし手法を提案する。
提案するフレームワークは,顔の操作や改ざんに対して脆弱であると同時に,画像処理操作や透かし除去攻撃に対して頑健であるように設計されている。
論文 参考訳(メタデータ) (2024-10-02T18:05:03Z) - Certifiably Robust Image Watermark [57.546016845801134]
ジェネレーティブAIは、偽情報やプロパガンダキャンペーンの促進など、多くの社会的懸念を提起する。
ウォーターマークAI生成コンテンツは、これらの懸念に対処するための重要な技術である。
本報告では, 除去・偽造攻撃に対するロバスト性保証を保証した最初の画像透かしを提案する。
論文 参考訳(メタデータ) (2024-07-04T17:56:04Z) - Robust Identity Perceptual Watermark Against Deepfake Face Swapping [8.276177968730549]
ディープフェイク・フェイススワップは、ディープジェネレーティブ・モデルの急速な開発で重要なプライバシー問題を引き起こしている。
本稿では,Deepfakeの顔スワップに対する検出とソーストレースを同時に行う,最初の堅牢なアイデンティティ認識型透かしフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-02T16:04:32Z) - Dual Defense: Adversarial, Traceable, and Invisible Robust Watermarking
against Face Swapping [13.659927216999407]
顔交換に代表される深い偽造の悪意ある応用は、誤情報拡散や身元確認詐欺のようなセキュリティ上の脅威を導入している。
本稿では,デュアルディフェンス(Dual Defense)と呼ばれる,トレーサビリティと敵意を組み合わせた新たなアクティブディフェンス機構を提案する。
ターゲットの顔に単一の堅牢な透かしを埋め込んで、悪意のある顔交換の突然のケースに積極的に反応する。
論文 参考訳(メタデータ) (2023-10-25T10:39:51Z) - Robustness of AI-Image Detectors: Fundamental Limits and Practical
Attacks [47.04650443491879]
我々は、透かしやディープフェイク検出器を含む様々なAI画像検出器の堅牢性を分析する。
ウォーターマーキング手法は,攻撃者が実際の画像をウォーターマーキングとして識別することを目的としたスプーフ攻撃に対して脆弱であることを示す。
論文 参考訳(メタデータ) (2023-09-29T18:30:29Z) - Invisible Image Watermarks Are Provably Removable Using Generative AI [47.25747266531665]
Invisibleの透かしは、所有者によってのみ検出可能な隠されたメッセージを埋め込むことで、画像の著作権を保護する。
我々は、これらの見えない透かしを取り除くために、再生攻撃のファミリーを提案する。
提案手法は,まず画像にランダムノイズを加えて透かしを破壊し,画像を再構成する。
論文 参考訳(メタデータ) (2023-06-02T23:29:28Z) - Certified Neural Network Watermarks with Randomized Smoothing [64.86178395240469]
本稿では,ディープラーニングモデルのための認証型透かし手法を提案する。
我々の透かしは、モデルパラメータが特定のl2しきい値以上変更されない限り、取り外し不可能であることが保証されている。
私たちの透かしは、従来の透かし法に比べて経験的に頑丈です。
論文 参考訳(メタデータ) (2022-07-16T16:06:59Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
我々は異なる視点から新しい透かし除去攻撃を提案する。
我々は、知覚不可能なパターン埋め込みと空間レベルの変換を組み合わせることで、単純だが強力な変換アルゴリズムを設計する。
我々の攻撃は、非常に高い成功率で最先端の透かしソリューションを回避できる。
論文 参考訳(メタデータ) (2020-09-18T09:14:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。