論文の概要: Online Multi-level Contrastive Representation Distillation for Cross-Subject fNIRS Emotion Recognition
- arxiv url: http://arxiv.org/abs/2409.16081v1
- Date: Tue, 24 Sep 2024 13:30:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 05:46:35.940383
- Title: Online Multi-level Contrastive Representation Distillation for Cross-Subject fNIRS Emotion Recognition
- Title(参考訳): クロスオブジェクトfNIRS感情認識のためのオンラインマルチレベルコントラスト表現蒸留
- Authors: Zhili Lai, Chunmei Qing, Junpeng Tan, Wanxiang Luo, Xiangmin Xu,
- Abstract要約: 我々は,OMCRD(Online Multi-level Contrastive Representation Distillation framework)と呼ばれる,クロスオブジェクトなfNIRS感情認識手法を提案する。
OMCRDは、複数の軽量学生ネットワーク間の相互学習のために設計されたフレームワークである。
いくつかの実験結果から,OMCRDは情緒的知覚や情緒的イメージタスクにおいて,最先端の成果を達成できることが示された。
- 参考スコア(独自算出の注目度): 11.72499878247794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Utilizing functional near-infrared spectroscopy (fNIRS) signals for emotion recognition is a significant advancement in understanding human emotions. However, due to the lack of artificial intelligence data and algorithms in this field, current research faces the following challenges: 1) The portable wearable devices have higher requirements for lightweight models; 2) The objective differences of physiology and psychology among different subjects aggravate the difficulty of emotion recognition. To address these challenges, we propose a novel cross-subject fNIRS emotion recognition method, called the Online Multi-level Contrastive Representation Distillation framework (OMCRD). Specifically, OMCRD is a framework designed for mutual learning among multiple lightweight student networks. It utilizes multi-level fNIRS feature extractor for each sub-network and conducts multi-view sentimental mining using physiological signals. The proposed Inter-Subject Interaction Contrastive Representation (IS-ICR) facilitates knowledge transfer for interactions between student models, enhancing cross-subject emotion recognition performance. The optimal student network can be selected and deployed on a wearable device. Some experimental results demonstrate that OMCRD achieves state-of-the-art results in emotional perception and affective imagery tasks.
- Abstract(参考訳): 機能的近赤外分光(fNIRS)信号を用いた感情認識は、人間の感情を理解する上で重要な進歩である。
しかし、この分野で人工知能のデータとアルゴリズムが不足しているため、現在の研究は以下の課題に直面している。
1) 携帯型ウェアラブルデバイスは,軽量モデルの要求が高い。
2) 被験者間の生理・心理学の客観的差異は, 感情認識の難しさを増す。
これらの課題に対処するために,オンラインマルチレベルコントラスト表現蒸留フレームワーク (OMCRD) と呼ばれる,新たなオブジェクト間のfNIRS感情認識手法を提案する。
具体的には、OMCRDは、複数の軽量学生ネットワーク間の相互学習のために設計されたフレームワークである。
サブネットワーク毎にマルチレベルfNIRS特徴抽出器を使用し、生理的信号を用いてマルチビュー感傷的マイニングを行う。
The proposed Inter-ject Interaction Contrastive Representation (IS-ICR) is help knowledge transfer for interaction between students model, enhance cross-ject emotion recognition performance。
最適な学生ネットワークを、ウェアラブルデバイスに選択して展開することができる。
いくつかの実験結果から,OMCRDは情緒的知覚や情緒的イメージタスクにおいて,最先端の成果を達成できることが示された。
関連論文リスト
- Multi-modal Mood Reader: Pre-trained Model Empowers Cross-Subject Emotion Recognition [23.505616142198487]
我々は、クロスオブジェクト感情認識のための訓練済みモデルに基づくMultimodal Mood Readerを開発した。
このモデルは、大規模データセットの事前学習を通じて、脳波信号の普遍的な潜在表現を学習する。
公開データセットに関する大規模な実験は、クロスオブジェクト感情認識タスクにおけるMood Readerの優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-05-28T14:31:11Z) - Two in One Go: Single-stage Emotion Recognition with Decoupled Subject-context Transformer [78.35816158511523]
単段階の感情認識手法として,DSCT(Decoupled Subject-Context Transformer)を用いる。
広範に使われている文脈認識型感情認識データセットであるCAER-SとEMOTICの単段階フレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-04-26T07:30:32Z) - Deep Imbalanced Learning for Multimodal Emotion Recognition in
Conversations [15.705757672984662]
会話におけるマルチモーダル感情認識(MERC)は、マシンインテリジェンスにとって重要な開発方向である。
MERCのデータの多くは自然に感情カテゴリーの不均衡な分布を示しており、研究者は感情認識に対する不均衡なデータの負の影響を無視している。
生データにおける感情カテゴリーの不均衡分布に対処するクラス境界拡張表現学習(CBERL)モデルを提案する。
我々は,IEMOCAPおよびMELDベンチマークデータセットの広範な実験を行い,CBERLが感情認識の有効性において一定の性能向上を達成したことを示す。
論文 参考訳(メタデータ) (2023-12-11T12:35:17Z) - Emotion recognition based on multi-modal electrophysiology multi-head
attention Contrastive Learning [3.2536246345549538]
自己教師型コントラスト学習に基づくマルチモーダル感情認識手法ME-MHACLを提案する。
訓練された特徴抽出器をラベル付き電気生理学的信号に適用し、特徴融合に多頭部注意機構を用いる。
本手法は,感情認識タスクにおける既存のベンチマーク手法よりも優れ,個人間一般化能力に優れていた。
論文 参考訳(メタデータ) (2023-07-12T05:55:40Z) - A Hierarchical Regression Chain Framework for Affective Vocal Burst
Recognition [72.36055502078193]
本稿では,声帯からの感情認識のための連鎖回帰モデルに基づく階層的枠組みを提案する。
データスパシティの課題に対処するため、レイヤワイドおよび時間アグリゲーションモジュールを備えた自己教師付き学習(SSL)表現も使用しています。
提案されたシステムは、ACII Affective Vocal Burst (A-VB) Challenge 2022に参加し、「TWO」および「CULTURE」タスクで第1位となった。
論文 参考訳(メタデータ) (2023-03-14T16:08:45Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
本稿では,音声とテキストのモダリティから,伝達学習モデルと微調整モデルとを融合したニューラルネットワークによる感情認識フレームワークを提案する。
本稿では,対話型感情的モーションキャプチャー・データセットにおけるマルチモーダル・アプローチの有効性を評価する。
論文 参考訳(メタデータ) (2022-02-16T00:23:42Z) - SOLVER: Scene-Object Interrelated Visual Emotion Reasoning Network [83.27291945217424]
画像から感情を予測するために,SOLVER(Scene-Object Interrelated Visual Emotion Reasoning Network)を提案する。
異なるオブジェクト間の感情関係を掘り下げるために、まずセマンティックな概念と視覚的特徴に基づいて感情グラフを構築します。
また、シーンとオブジェクトを統合するScene-Object Fusion Moduleを設計し、シーンの特徴を利用して、提案したシーンベースのアテンションメカニズムでオブジェクトの特徴の融合プロセスを導出する。
論文 参考訳(メタデータ) (2021-10-24T02:41:41Z) - Contrastive Learning of Subject-Invariant EEG Representations for
Cross-Subject Emotion Recognition [9.07006689672858]
本稿では、信頼度の高いクロスオブジェクト感情認識のためのISAのためのコントラスト学習法を提案する。
ISAは、異なる刺激に対して同じ刺激を受けた被験者間での脳波信号の類似性を最大化する。
脳波信号から物体間表現を学習するために,深部空間畳み込み層と時間畳み込み層を有する畳み込みニューラルネットワークを適用した。
論文 参考訳(メタデータ) (2021-09-20T14:13:45Z) - Stimuli-Aware Visual Emotion Analysis [75.68305830514007]
本稿では,刺激選択,特徴抽出,感情予測の3段階からなる刺激認識型視覚感情分析(VEA)手法を提案する。
我々の知る限りでは、エンド・ツー・エンドのネットワークでVEAに刺激選択プロセスを導入するのは初めてです。
実験により、提案手法は、4つの公的な視覚的感情データセットに対する最先端のアプローチよりも一貫して優れていることが示された。
論文 参考訳(メタデータ) (2021-09-04T08:14:52Z) - Cross-individual Recognition of Emotions by a Dynamic Entropy based on
Pattern Learning with EEG features [2.863100352151122]
複数の個体の神経生理学的特徴に関連する情報的指標を抽象化するために,動的エントロピーに基づくパターン学習(DEPL)として表されるディープラーニングフレームワークを提案する。
DEPLは、ダイナミックエントロピーに基づく特徴の皮質位置間の相互依存性をモデル化することにより、ディープ畳み込みニューラルネットワークによって生成された表現の能力を向上した。
論文 参考訳(メタデータ) (2020-09-26T07:22:07Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
マシンはユーザの感情状態を高い精度で認識できることが不可欠である。
ディープニューラルネットワークは感情を認識する上で大きな成功を収めている。
表情認識に基づく連続的感情認識のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-01-31T17:47:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。