論文の概要: The Digital Transformation in Health: How AI Can Improve the Performance of Health Systems
- arxiv url: http://arxiv.org/abs/2409.16098v1
- Date: Tue, 24 Sep 2024 13:52:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 05:36:51.258585
- Title: The Digital Transformation in Health: How AI Can Improve the Performance of Health Systems
- Title(参考訳): 医療におけるデジタルトランスフォーメーション:AIが医療システムのパフォーマンスをいかに改善するか
- Authors: África Periáñez, Ana Fernández del Río, Ivan Nazarov, Enric Jané, Moiz Hassan, Aditya Rastogi, Dexian Tang,
- Abstract要約: モバイルヘルスは、医療提供と患者のエンゲージメントに革命をもたらす可能性がある。
適応的な介入の配信を可能にする人工知能と強化学習プラットフォームを提案する。
このプラットフォームの柔軟性は、さまざまなモバイルヘルスアプリケーションやデジタルデバイスに接続し、パーソナライズされたレコメンデーションを送信することで、デジタルツールがヘルスシステムの結果に与える影響を大幅に改善することができる。
- 参考スコア(独自算出の注目度): 2.8351008282227266
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Mobile health has the potential to revolutionize health care delivery and patient engagement. In this work, we discuss how integrating Artificial Intelligence into digital health applications-focused on supply chain, patient management, and capacity building, among other use cases-can improve the health system and public health performance. We present an Artificial Intelligence and Reinforcement Learning platform that allows the delivery of adaptive interventions whose impact can be optimized through experimentation and real-time monitoring. The system can integrate multiple data sources and digital health applications. The flexibility of this platform to connect to various mobile health applications and digital devices and send personalized recommendations based on past data and predictions can significantly improve the impact of digital tools on health system outcomes. The potential for resource-poor settings, where the impact of this approach on health outcomes could be more decisive, is discussed specifically. This framework is, however, similarly applicable to improving efficiency in health systems where scarcity is not an issue.
- Abstract(参考訳): モバイルヘルスは、医療提供と患者のエンゲージメントに革命をもたらす可能性がある。
本稿では,サプライチェーン,患者管理,キャパシティ構築に焦点をあてたデジタルヘルスアプリケーションに人工知能を組み込むことによって,医療システムや公衆衛生のパフォーマンスを向上させる方法について論じる。
我々は、実験とリアルタイムモニタリングを通じて影響を最適化できる適応的介入の配信を可能にする人工知能と強化学習プラットフォームを提案する。
このシステムは、複数のデータソースとデジタルヘルスアプリケーションを統合することができる。
このプラットフォームの柔軟性は、さまざまなモバイルヘルスアプリケーションやデジタルデバイスに接続し、過去のデータと予測に基づいてパーソナライズされたレコメンデーションを送信することで、デジタルツールがヘルスシステムの結果に与える影響を大幅に改善することができる。
このアプローチが健康上の結果に与える影響がより決定的になる可能性のある、リソース不足設定の可能性について、特に論じる。
しかし、この枠組みは、不足が問題にならない健康システムの効率改善にも適用できる。
関連論文リスト
- Harnessing the Digital Revolution: A Comprehensive Review of mHealth Applications for Remote Monitoring in Transforming Healthcare Delivery [1.03590082373586]
このレビューでは、遠隔医療プラットフォーム、慢性疾患管理用のモバイルアプリ、ウェアラブルデバイスなど、リモート監視に使用されるさまざまなタイプのmHealthアプリケーションを強調している。
これらの応用の利点は、患者の成果の改善、医療へのアクセスの向上、医療費の削減、医療格差への対処である。
しかしながら、プライバシやセキュリティ上の懸念、技術的なインフラストラクチャの欠如、規制のイシュー、データの正確性、ユーザの遵守、ディジタルディビジョンといった課題や制限には対処する必要がある。
論文 参考訳(メタデータ) (2024-08-26T11:32:43Z) - Zero Shot Health Trajectory Prediction Using Transformer [11.660997334071952]
ETHOS(Enhanced Transformer for Health Outcome Simulation)は、健康データ解析のためのトランスフォーマーディープラーニングアーキテクチャの新しい応用である。
ETHOSは、将来の健康軌道を予測するために、患者健康時間線(PHT)の詳細とトークン化された健康イベントの記録を使用して訓練されている。
論文 参考訳(メタデータ) (2024-07-30T18:33:05Z) - Health-LLM: Personalized Retrieval-Augmented Disease Prediction System [43.91623010448573]
本稿では,大規模特徴抽出と医療知識トレードオフスコアリングを組み合わせた,革新的なフレームワークHeath-LLMを提案する。
従来の健康管理アプリケーションと比較して,本システムには3つの利点がある。
論文 参考訳(メタデータ) (2024-02-01T16:40:32Z) - Generative AI-Driven Human Digital Twin in IoT-Healthcare: A Comprehensive Survey [53.691704671844406]
IoT(Internet of Things)は、特にヘルスケアにおいて、人間の生活の質を大幅に向上させる。
ヒトデジタルツイン(HDT)は、個体の複製を包括的に特徴付ける革新的なパラダイムとして提案されている。
HDTは、多用途で生き生きとした人間のデジタルテストベッドとして機能することで、医療監視の応用を超えて、IoTヘルスの強化を図っている。
最近、生成人工知能(GAI)は、高度なAIアルゴリズムを利用して、多種多様なデータを自動的に生成、操作、修正できるため、有望なソリューションである可能性がある。
論文 参考訳(メタデータ) (2024-01-22T03:17:41Z) - Deep Reinforcement Learning Empowered Activity-Aware Dynamic Health
Monitoring Systems [69.41229290253605]
既存のモニタリングアプローチは、医療機器が複数の健康指標を同時に追跡するという前提で設計されている。
これは、その範囲内で関連するすべての健康値を報告し、過剰なリソース使用と外部データの収集をもたらす可能性があることを意味します。
最適なモニタリング性能とコスト効率のバランスをとるための動的アクティビティ・アウェアヘルスモニタリング戦略(DActAHM)を提案する。
論文 参考訳(メタデータ) (2024-01-19T16:26:35Z) - Blockchain-empowered Federated Learning for Healthcare Metaverses:
User-centric Incentive Mechanism with Optimal Data Freshness [66.3982155172418]
まず、医療メタバースのための分散型フェデレートラーニング(FL)に基づく、ユーザ中心のプライバシ保護フレームワークを設計する。
次に,情報時代(AoI)を有効データ更新度指標として利用し,観測理論(PT)に基づくAoIベースの契約理論モデルを提案し,センシングデータ共有の動機付けを行う。
論文 参考訳(メタデータ) (2023-07-29T12:54:03Z) - The Design and Implementation of a National AI Platform for Public
Healthcare in Italy: Implications for Semantics and Interoperability [62.997667081978825]
イタリア国立衛生局は、その技術機関を通じて人工知能を採用している。
このような広大なプログラムには、知識領域の形式化に特別な注意が必要である。
AIが患者、開業医、健康システムに与える影響について疑問が投げかけられている。
論文 参考訳(メタデータ) (2023-04-24T08:00:02Z) - I-Health: Leveraging Edge Computing and Blockchain for Epidemic
Management [36.55809341110476]
エピデミックな状況は、厳密な時間制約の中で、異なる場所やエンティティから集中的なデータ収集と管理を要求する。
本稿では, 独自の医療システムにおいて, 多様なeヘルスエンティティを集約することを目的とした, インテリジェントヘルス(Iヘルス)システムを提案する。
特に,早期発見,遠隔監視,迅速な緊急対応が可能な,患者自動監視方式をエッジに設計する。
論文 参考訳(メタデータ) (2020-12-18T23:41:00Z) - Assessing the Severity of Health States based on Social Media Posts [62.52087340582502]
ユーザの健康状態の重症度を評価するために,テキストコンテンツとコンテキスト情報の両方をモデル化する多視点学習フレームワークを提案する。
多様なNLUビューは、ユーザの健康を評価するために、タスクと個々の疾患の両方に効果を示す。
論文 参考訳(メタデータ) (2020-09-21T03:45:14Z) - SSHealth: Toward Secure, Blockchain-Enabled Healthcare Systems [13.035267999201935]
本稿では,感染症の発見,遠隔監視,迅速な緊急対応を可能にする,スマートでセキュアな医療システム(ssHealth)を提案する。
ブロックチェーンベースのアーキテクチャを開発し、そのフレキシブルな構成を可能にし、異なるヘルスエンティティ間の医療データ共有を最適化します。
提案するssHealthシステムの利点と今後の研究の方向性を明らかにする。
論文 参考訳(メタデータ) (2020-06-18T20:34:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。