Deep Learning for Precision Agriculture: Post-Spraying Evaluation and Deposition Estimation
- URL: http://arxiv.org/abs/2409.16213v1
- Date: Tue, 24 Sep 2024 16:16:19 GMT
- Title: Deep Learning for Precision Agriculture: Post-Spraying Evaluation and Deposition Estimation
- Authors: Harry Rogers, Tahmina Zebin, Grzegorz Cielniak, Beatriz De La Iglesia, Ben Magri,
- Abstract summary: We propose an XAI pipeline to evaluate a precision spraying system post-spraying without the need for traditional agricultural methods.
The developed system can semantically segment potential targets such as lettuce, chickweed, and meadowgrass and correctly identify if targets have been sprayed.
- Score: 5.971046215117033
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Precision spraying evaluation requires automation primarily in post-spraying imagery. In this paper we propose an eXplainable Artificial Intelligence (XAI) computer vision pipeline to evaluate a precision spraying system post-spraying without the need for traditional agricultural methods. The developed system can semantically segment potential targets such as lettuce, chickweed, and meadowgrass and correctly identify if targets have been sprayed. Furthermore, this pipeline evaluates using a domain-specific Weakly Supervised Deposition Estimation task, allowing for class-specific quantification of spray deposit weights in {\mu}L. Estimation of coverage rates of spray deposition in a class-wise manner allows for further understanding of effectiveness of precision spraying systems. Our study evaluates different Class Activation Mapping techniques, namely AblationCAM and ScoreCAM, to determine which is more effective and interpretable for these tasks. In the pipeline, inference-only feature fusion is used to allow for further interpretability and to enable the automation of precision spraying evaluation post-spray. Our findings indicate that a Fully Convolutional Network with an EfficientNet-B0 backbone and inference-only feature fusion achieves an average absolute difference in deposition values of 156.8 {\mu}L across three classes in our test set. The dataset curated in this paper is publicly available at https://github.com/Harry-Rogers/PSIE
Related papers
- Vision-based Xylem Wetness Classification in Stem Water Potential Determination [8.597874067545233]
This work focused on automating stem detection and xylem wetness classification using the Scholander Pressure Chamber.
The aim was to refine stem detection and develop computer-vision-based methods to better classify water emergence at the xylem.
Learning-based stem detection via YOLOv8n combined with ResNet50-based classification achieved a Top-1 accuracy of 80.98%.
arXiv Detail & Related papers (2024-09-24T19:24:04Z) - Generative models-based data labeling for deep networks regression:
application to seed maturity estimation from UAV multispectral images [3.6868861317674524]
Monitoring seed maturity is an increasing challenge in agriculture due to climate change and more restrictive practices.
Traditional methods are based on limited sampling in the field and analysis in laboratory.
We propose a method for estimating parsley seed maturity using multispectral UAV imagery, with a new approach for automatic data labeling.
arXiv Detail & Related papers (2022-08-09T09:06:51Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Less is More: Lighter and Faster Deep Neural Architecture for Tomato
Leaf Disease Classification [0.36700088931938835]
This work proposes a lightweight transfer learning-based approach for detecting diseases from tomato leaves.
It utilizes an effective preprocessing method to enhance the leaf images with illumination correction for improved classification.
The proposed architecture achieves 99.30% accuracy with a model size of 9.60MB and 4.87M floating-point operations.
arXiv Detail & Related papers (2021-09-06T12:14:02Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - Detection of Adversarial Supports in Few-shot Classifiers Using Feature
Preserving Autoencoders and Self-Similarity [89.26308254637702]
We propose a detection strategy to highlight adversarial support sets.
We make use of feature preserving autoencoder filtering and also the concept of self-similarity of a support set to perform this detection.
Our method is attack-agnostic and also the first to explore detection for few-shot classifiers to the best of our knowledge.
arXiv Detail & Related papers (2020-12-09T14:13:41Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
We present a previously unrecognized threat to robust machine learning models that highlights the importance of training-data quality.
We propose a novel bilevel optimization-based data poisoning attack that degrades the robustness guarantees of certifiably robust classifiers.
Our attack is effective even when the victim trains the models from scratch using state-of-the-art robust training methods.
arXiv Detail & Related papers (2020-12-02T15:30:21Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
We propose to leverage both labeled and unlabeled data for instance segmentation with improved accuracy by knowledge distillation.
We propose a novel Mask-guided Mean Teacher framework with Perturbation-sensitive Sample Mining.
Experiments show that the proposed method improves the performance significantly compared with the supervised method learned from labeled data only.
arXiv Detail & Related papers (2020-07-21T13:27:09Z) - Distilling Object Detectors with Task Adaptive Regularization [97.52935611385179]
Current state-of-the-art object detectors are at the expense of high computational costs and are hard to deploy to low-end devices.
Knowledge distillation, which aims at training a smaller student network by transferring knowledge from a larger teacher model, is one of the promising solutions for model miniaturization.
arXiv Detail & Related papers (2020-06-23T15:58:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.