Vision-based Xylem Wetness Classification in Stem Water Potential Determination
- URL: http://arxiv.org/abs/2409.16412v1
- Date: Tue, 24 Sep 2024 19:24:04 GMT
- Title: Vision-based Xylem Wetness Classification in Stem Water Potential Determination
- Authors: Pamodya Peiris, Aritra Samanta, Caio Mucchiani, Cody Simons, Amit Roy-Chowdhury, Konstantinos Karydis,
- Abstract summary: This work focused on automating stem detection and xylem wetness classification using the Scholander Pressure Chamber.
The aim was to refine stem detection and develop computer-vision-based methods to better classify water emergence at the xylem.
Learning-based stem detection via YOLOv8n combined with ResNet50-based classification achieved a Top-1 accuracy of 80.98%.
- Score: 8.597874067545233
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Water is often overused in irrigation, making efficient management of it crucial. Precision Agriculture emphasizes tools like stem water potential (SWP) analysis for better plant status determination. However, such tools often require labor-intensive in-situ sampling. Automation and machine learning can streamline this process and enhance outcomes. This work focused on automating stem detection and xylem wetness classification using the Scholander Pressure Chamber, a widely used but demanding method for SWP measurement. The aim was to refine stem detection and develop computer-vision-based methods to better classify water emergence at the xylem. To this end, we collected and manually annotated video data, applying vision- and learning-based methods for detection and classification. Additionally, we explored data augmentation and fine-tuned parameters to identify the most effective models. The identified best-performing models for stem detection and xylem wetness classification were evaluated end-to-end over 20 SWP measurements. Learning-based stem detection via YOLOv8n combined with ResNet50-based classification achieved a Top-1 accuracy of 80.98%, making it the best-performing approach for xylem wetness classification.
Related papers
- Deep Learning for Precision Agriculture: Post-Spraying Evaluation and Deposition Estimation [5.971046215117033]
We propose an XAI pipeline to evaluate a precision spraying system post-spraying without the need for traditional agricultural methods.
The developed system can semantically segment potential targets such as lettuce, chickweed, and meadowgrass and correctly identify if targets have been sprayed.
arXiv Detail & Related papers (2024-09-24T16:16:19Z) - Unlearnable Examples Detection via Iterative Filtering [84.59070204221366]
Deep neural networks are proven to be vulnerable to data poisoning attacks.
It is quite beneficial and challenging to detect poisoned samples from a mixed dataset.
We propose an Iterative Filtering approach for UEs identification.
arXiv Detail & Related papers (2024-08-15T13:26:13Z) - Automated Classification of Dry Bean Varieties Using XGBoost and SVM Models [0.0]
This paper presents a comparative study on the automated classification of seven different varieties of dry beans using machine learning models.
The XGBoost and SVM models achieved overall correct classification rates of 94.00% and 94.39%, respectively.
This study contributes to the growing body of work on precision agriculture, demonstrating that automated systems can significantly support seed quality control and crop yield optimization.
arXiv Detail & Related papers (2024-08-02T13:05:33Z) - High-Throughput Phenotyping using Computer Vision and Machine Learning [0.0]
We used a dataset provided by Oak Ridge National Laboratory with 1,672 images of Populus Trichocarpa with white labels displaying treatment.
Optical character recognition (OCR) was used to read these labels on the plants.
Machine learning models were used to predict treatment based on those classifications, and analyzed encoded EXIF tags were used for the purpose of finding leaf size and correlations between phenotypes.
arXiv Detail & Related papers (2024-07-08T19:46:31Z) - Identifying Alzheimer Disease Dementia Levels Using Machine Learning
Methods [0.0]
We suggest an approach for classifying the four stages of dementia using RF, SVM, and CNN algorithms, augmented with watershed segmentation for feature extraction from MRI images.
Our results reveal that SVM with watershed features achieves an impressive accuracy of 96.25%, surpassing other classification methods.
arXiv Detail & Related papers (2023-11-02T17:44:28Z) - Watermarking for Out-of-distribution Detection [76.20630986010114]
Out-of-distribution (OOD) detection aims to identify OOD data based on representations extracted from well-trained deep models.
We propose a general methodology named watermarking in this paper.
We learn a unified pattern that is superimposed onto features of original data, and the model's detection capability is largely boosted after watermarking.
arXiv Detail & Related papers (2022-10-27T06:12:32Z) - A multiscale spatiotemporal approach for smallholder irrigation
detection [0.0]
This paper presents an irrigation detection methodology that leverages multiscale satellite imagery of vegetation abundance.
The methodology is applied to detect smallholder irrigation in two states in the Ethiopian highlands, Tigray and Amhara.
arXiv Detail & Related papers (2022-02-09T02:50:42Z) - Surface Warping Incorporating Machine Learning Assisted Domain
Likelihood Estimation: A New Paradigm in Mine Geology Modelling and
Automation [68.8204255655161]
A Bayesian warping technique has been proposed to reshape modeled surfaces based on geochemical and spatial constraints imposed by newly acquired blasthole data.
This paper focuses on incorporating machine learning in this warping framework to make the likelihood generalizable.
Its foundation is laid by a Bayesian computation in which the geological domain likelihood given the chemistry, p(g|c) plays a similar role to p(y(c)|g.
arXiv Detail & Related papers (2021-02-15T10:37:52Z) - Unassisted Noise Reduction of Chemical Reaction Data Sets [59.127921057012564]
We propose a machine learning-based, unassisted approach to remove chemically wrong entries from data sets.
Our results show an improved prediction quality for models trained on the cleaned and balanced data sets.
arXiv Detail & Related papers (2021-02-02T09:34:34Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
We propose to leverage both labeled and unlabeled data for instance segmentation with improved accuracy by knowledge distillation.
We propose a novel Mask-guided Mean Teacher framework with Perturbation-sensitive Sample Mining.
Experiments show that the proposed method improves the performance significantly compared with the supervised method learned from labeled data only.
arXiv Detail & Related papers (2020-07-21T13:27:09Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.