論文の概要: Learning To Help: Training Models to Assist Legacy Devices
- arxiv url: http://arxiv.org/abs/2409.16253v1
- Date: Tue, 24 Sep 2024 17:21:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 05:07:38.035684
- Title: Learning To Help: Training Models to Assist Legacy Devices
- Title(参考訳): 支援する学習: レガシーデバイスを支援するためのトレーニングモデル
- Authors: Yu Wu, Anand Sarwate,
- Abstract要約: MLモデルのサイズのため、いくつかの計算(例えばエッジクラウド)をオフロードすることは、そのようなレガシーデバイスに役立つ。
固定された(合法的な)クライアントのために専門家を訓練する際の逆問題を形式化する。
ベイズ最適法則を見つけ、一般化境界を証明し、一貫した代理損失関数を求める。
- 参考スコア(独自算出の注目度): 8.80570285050982
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning models implemented in hardware on physical devices may be deployed for a long time. The computational abilities of the device may be limited and become outdated with respect to newer improvements. Because of the size of ML models, offloading some computation (e.g. to an edge cloud) can help such legacy devices. We cast this problem in the framework of learning with abstention (LWA) in which the expert (edge) must be trained to assist the client (device). Prior work on LWA trains the client assuming the edge is either an oracle or a human expert. In this work, we formalize the reverse problem of training the expert for a fixed (legacy) client. As in LWA, the client uses a rejection rule to decide when to offload inference to the expert (at a cost). We find the Bayes-optimal rule, prove a generalization bound, and find a consistent surrogate loss function. Empirical results show that our framework outperforms confidence-based rejection rules.
- Abstract(参考訳): 物理デバイス上でハードウェアで実装された機械学習モデルは、長い間デプロイされる可能性がある。
デバイスの計算能力は制限され、新しい改善に関して時代遅れになる可能性がある。
MLモデルのサイズのため、いくつかの計算(例えばエッジクラウド)をオフロードすることは、そのようなレガシーデバイスに役立つ。
我々はこの問題を、専門家(エッジ)がクライアント(デバイス)を支援するために訓練されなければならない、棄権学習(LWA)の枠組みに当てた。
LWAの以前の作業では、エッジがオラクルか人間の専門家であると仮定したクライアントを訓練する。
本研究では,固定された(レガシーな)クライアントに対して,専門家を訓練する際の逆問題について定式化する。
LWAのように、クライアントは(コストで)専門家に推論をオフロードするタイミングを決定するためにリジェクションルールを使用する。
ベイズ最適法則を見つけ、一般化境界を証明し、一貫した代理損失関数を求める。
実験の結果,我々のフレームワークは信頼に基づく拒絶規則よりも優れていた。
関連論文リスト
- The Gift of Feedback: Improving ASR Model Quality by Learning from User
Corrections through Federated Learning [20.643270151774182]
フェデレートラーニング(FL)を通じてデバイス上でのユーザ修正から継続的に学習することを目指す。
我々は、モデルがこれまで遭遇していなかった新しい用語をターゲットとして、長い尾の単語を学習し、破滅的な忘れ事をする手法を探究する。
実験により,提案手法は,言語分布全体の品質を保ちながら,新しい用語のモデル認識を改善することが確認された。
論文 参考訳(メタデータ) (2023-09-29T21:04:10Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - BAFFLE: A Baseline of Backpropagation-Free Federated Learning [71.09425114547055]
フェデレートラーニング(FL)は、分散クライアントがローカルデータを共有せずにサーバモデルをまとめて訓練する一般的な原則である。
我々は、バックプロパゲーションを複数のフォワードプロセスに置き換えて勾配を推定する、BAFFLEと呼ばれる、バックプロパゲーションフリーなフェデレーション学習を開発する。
BAFFLEは、1)メモリ効率が高く、アップロード帯域幅に適しており、2)推論のみのハードウェア最適化とモデル量子化やプルーニングと互換性があり、3)信頼できる実行環境に適している。
論文 参考訳(メタデータ) (2023-01-28T13:34:36Z) - LegoNet: A Fast and Exact Unlearning Architecture [59.49058450583149]
機械学習は、トレーニングされたモデルから削除された要求に対する特定のトレーニングサンプルの影響を削除することを目的としている。
固定エンコーダ+複数アダプタのフレームワークを採用した新しいネットワークである textitLegoNet を提案する。
我々は、LegoNetが許容できる性能を維持しつつ、高速かつ正確な未学習を実現し、未学習のベースラインを総合的に上回っていることを示す。
論文 参考訳(メタデータ) (2022-10-28T09:53:05Z) - Federated Split GANs [12.007429155505767]
ユーザデバイス自体でMLモデルをトレーニングするための代替手法を提案する。
我々は、GAN(ジェネレーティブ・逆境ネットワーク)に注目し、その固有のプライバシー保護属性を活用する。
我々のシステムはデータのプライバシを保ち、短時間のトレーニング時間を保ち、制約のないデバイスで同じ精度でモデルトレーニングを行う。
論文 参考訳(メタデータ) (2022-07-04T23:53:47Z) - An Explainable Regression Framework for Predicting Remaining Useful Life
of Machines [6.374451442486538]
本稿では,機械の残留実用寿命(RUL)予測のための説明可能な回帰フレームワークを提案する。
また、古典的およびニューラルネットワーク(NN)に基づくタスクのためのソリューションを含む機械学習(ML)アルゴリズムを評価した。
論文 参考訳(メタデータ) (2022-04-28T15:44:12Z) - No One Left Behind: Inclusive Federated Learning over Heterogeneous
Devices [79.16481453598266]
この問題に対処するクライアント包摂的フェデレーション学習手法であるInclusiveFLを提案する。
InclusiveFLの中核となる考え方は、異なるサイズのモデルを異なる計算能力を持つクライアントに割り当てることである。
また,異なる大きさの複数の局所モデル間で知識を共有する効果的な手法を提案する。
論文 参考訳(メタデータ) (2022-02-16T13:03:27Z) - Editing Factual Knowledge in Language Models [51.947280241185]
本稿では,この知識を編集する手法であるKnowledgeEditorを提案する。
knowledgeeditorは計算効率が高いだけでなく、lm事前トレーニングの修正も必要としない。
2つの一般的なアーキテクチャと知識集約型タスクで、KnowledgeEditorの有効性を示します。
論文 参考訳(メタデータ) (2021-04-16T15:24:42Z) - Knowledge Distillation for Mobile Edge Computation Offloading [14.417463848473494]
本稿では,Deep Imitation Learning(DIL)とKD(Knowledge Distillation)に基づくエッジ計算のオフロードフレームワークを提案する。
我々のモデルはすべての政策の中で最短の推論遅延を持っている。
論文 参考訳(メタデータ) (2020-04-09T04:58:46Z) - An Information-Theoretic Approach to Personalized Explainable Machine
Learning [92.53970625312665]
本稿では,予測とユーザ知識のための簡易確率モデルを提案する。
説明と予測の間の条件付き相互情報による説明の効果を定量化する。
論文 参考訳(メタデータ) (2020-03-01T13:06:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。