Automated Spatio-Temporal Weather Modeling for Load Forecasting
- URL: http://arxiv.org/abs/2409.16326v1
- Date: Mon, 23 Sep 2024 06:55:57 GMT
- Title: Automated Spatio-Temporal Weather Modeling for Load Forecasting
- Authors: Julie Keisler, Margaux Bregere,
- Abstract summary: Electricity is traditionally managed by anticipating demand and intermittent production (wind, solar) and matching flexible production (hydro, nuclear, coal and gas)
Both are highly dependent on meteorological variables (temperature, wind, sunshine)
With access to observations from different weather stations and simulated data from meteorological models, we believe that both phenomena can be modeled.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electricity is difficult to store, except at prohibitive cost, and therefore the balance between generation and load must be maintained at all times. Electricity is traditionally managed by anticipating demand and intermittent production (wind, solar) and matching flexible production (hydro, nuclear, coal and gas). Accurate forecasting of electricity load and renewable production is therefore essential to ensure grid performance and stability. Both are highly dependent on meteorological variables (temperature, wind, sunshine). These dependencies are complex and difficult to model. On the one hand, spatial variations do not have a uniform impact because population, industry, and wind and solar farms are not evenly distributed across the territory. On the other hand, temporal variations can have delayed effects on load (due to the thermal inertia of buildings). With access to observations from different weather stations and simulated data from meteorological models, we believe that both phenomena can be modeled together. In today's state-of-the-art load forecasting models, the spatio-temporal modeling of the weather is fixed. In this work, we aim to take advantage of the automated representation and spatio-temporal feature extraction capabilities of deep neural networks to improve spatio-temporal weather modeling for load forecasting. We compare our deep learning-based methodology with the state-of-the-art on French national load. This methodology could also be fully adapted to forecasting renewable energy production.
Related papers
- Towards Accurate Forecasting of Renewable Energy : Building Datasets and Benchmarking Machine Learning Models for Solar and Wind Power in France [1.2289361708127877]
This study presents a comprehensive methodology for predicting solar and wind power production at country scale in France.
A dataset is built spanning from 2012 to 2023, using daily power production data from RTE.
Three modeling approaches are explored to handle spatially resolved weather data.
arXiv Detail & Related papers (2025-04-14T15:30:54Z) - Hourly Short Term Load Forecasting for Residential Buildings and Energy Communities [0.0]
We introduce persistence models, auto-regressive-based machine learning models, and more advanced deep learning models.
We observe a 15-30% increase in the prediction accuracy of the newly introduced hourly-based forecasting models over existing approaches.
arXiv Detail & Related papers (2025-01-31T15:49:09Z) - On autoregressive deep learning models for day-ahead wind power forecasting with irregular shutdowns due to redispatching [0.6001424997506751]
Day-ahead forecasts are necessary to communicate Wind Power (WP) availability for redispatch planning.
The irregular interventions into the WP generation capabilities due to redispatch shutdowns pose challenges in the design and operation of WP forecasting models.
This paper analyzes state-of-the-art forecasting methods on data sets with both regular and irregular shutdowns.
arXiv Detail & Related papers (2024-11-30T10:30:11Z) - Robustness of AI-based weather forecasts in a changing climate [1.4779266690741741]
We show that current state-of-the-art machine learning models trained for weather forecasting in present-day climate produce skillful forecasts across different climate states.
Despite current limitations, our results suggest that data-driven machine learning models will provide powerful tools for climate science.
arXiv Detail & Related papers (2024-09-27T08:11:49Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
This paper proposes a physics-AI hybrid model (i.e., WeatherGFT) which Generalizes weather forecasts to Finer-grained Temporal scales.
Specifically, we employ a carefully designed PDE kernel to simulate physical evolution on a small time scale.
We introduce a lead time-aware training framework to promote the generalization of the model at different lead times.
arXiv Detail & Related papers (2024-05-22T16:21:02Z) - AI-Powered Predictions for Electricity Load in Prosumer Communities [0.0]
We present and test artificial intelligence powered short-term load forecasting methodologies.
Results show that the combination of persistent and regression terms (adapted to the load forecasting task) achieves the best forecast accuracy.
arXiv Detail & Related papers (2024-02-21T12:23:09Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - Efficient Subseasonal Weather Forecast using Teleconnection-informed
Transformers [29.33938664834226]
Subseasonal forecasting is pivotal for agriculture, water resource management, and early warning of disasters.
Recent advances in machine learning have revolutionized weather forecasting by achieving competitive predictive skills to numerical models.
However, training such foundation models requires thousands of GPU days, which causes substantial carbon emissions.
arXiv Detail & Related papers (2024-01-31T14:27:35Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - SEEDS: Emulation of Weather Forecast Ensembles with Diffusion Models [13.331224394143117]
Uncertainty quantification is crucial to decision-making.
dominant approach to representing uncertainty in weather forecasting is to generate an ensemble of forecasts.
We propose to amortize the computational cost by emulating these forecasts with deep generative diffusion models learned from historical data.
arXiv Detail & Related papers (2023-06-24T22:00:06Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - Smart Weather Forecasting Using Machine Learning:A Case Study in
Tennessee [2.9477900773805032]
We present a weather prediction technique that utilizes historical data from multiple weather stations to train simple machine learning models.
The accuracy of the models is good enough to be used alongside the current state-of-the-art techniques.
arXiv Detail & Related papers (2020-08-25T02:41:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.