On autoregressive deep learning models for day-ahead wind power forecasting with irregular shutdowns due to redispatching
- URL: http://arxiv.org/abs/2412.00423v1
- Date: Sat, 30 Nov 2024 10:30:11 GMT
- Title: On autoregressive deep learning models for day-ahead wind power forecasting with irregular shutdowns due to redispatching
- Authors: Stefan Meisenbacher, Silas Aaron Selzer, Mehdi Dado, Maximilian Beichter, Tim Martin, Markus Zdrallek, Peter Bretschneider, Veit Hagenmeyer, Ralf Mikut,
- Abstract summary: Day-ahead forecasts are necessary to communicate Wind Power (WP) availability for redispatch planning.
The irregular interventions into the WP generation capabilities due to redispatch shutdowns pose challenges in the design and operation of WP forecasting models.
This paper analyzes state-of-the-art forecasting methods on data sets with both regular and irregular shutdowns.
- Score: 0.6001424997506751
- License:
- Abstract: Renewable energies and their operation are becoming increasingly vital for the stability of electrical power grids since conventional power plants are progressively being displaced, and their contribution to redispatch interventions is thereby diminishing. In order to consider renewable energies like Wind Power (WP) for such interventions as a substitute, day-ahead forecasts are necessary to communicate their availability for redispatch planning. In this context, automated and scalable forecasting models are required for the deployment to thousands of locally-distributed onshore WP turbines. Furthermore, the irregular interventions into the WP generation capabilities due to redispatch shutdowns pose challenges in the design and operation of WP forecasting models. Since state-of-the-art forecasting methods consider past WP generation values alongside day-ahead weather forecasts, redispatch shutdowns may impact the forecast. Therefore, the present paper highlights these challenges and analyzes state-of-the-art forecasting methods on data sets with both regular and irregular shutdowns. Specifically, we compare the forecasting accuracy of three autoregressive Deep Learning (DL) methods to methods based on WP curve modeling. Interestingly, the latter achieve lower forecasting errors, have fewer requirements for data cleaning during modeling and operation while being computationally more efficient, suggesting their advantages in practical applications.
Related papers
- Efficient mid-term forecasting of hourly electricity load using generalized additive models [0.0]
We propose a novel forecasting method using Generalized Additive Models (GAMs) built from interpretable P-splines and enhanced with autoregressive post-processing.
The proposed model is evaluated on load data from 24 European countries.
arXiv Detail & Related papers (2024-05-27T11:41:41Z) - Bias correction of wind power forecasts with SCADA data and continuous
learning [0.0]
We present, evaluate, and compare four machine learning-based wind power forecasting models.
The models are evaluated on datasets from a wind park comprising 65 wind turbines.
arXiv Detail & Related papers (2024-02-21T16:31:45Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
arXiv Detail & Related papers (2023-01-05T13:59:29Z) - Probabilistic forecasts of wind power generation in regions with complex
topography using deep learning methods: An Arctic case [3.3788638227700734]
This work presents concepts and approaches concerning probabilistic forecasts with deep learning.
Deep learning models are used to make probabilistic forecasts of day-ahead power generation from a wind power plant located in Northern Norway.
arXiv Detail & Related papers (2022-03-10T15:52:11Z) - Random vector functional link neural network based ensemble deep
learning for short-term load forecasting [14.184042046855884]
This paper proposes a novel ensemble deep Random Functional Link (edRVFL) network for electricity load forecasting.
The hidden layers are stacked to enforce deep representation learning.
The model generates the forecasts by ensembling the outputs of each layer.
arXiv Detail & Related papers (2021-07-30T01:20:48Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Physics-Informed Gaussian Process Regression for Probabilistic States
Estimation and Forecasting in Power Grids [67.72249211312723]
Real-time state estimation and forecasting is critical for efficient operation of power grids.
PhI-GPR is presented and used for forecasting and estimating the phase angle, angular speed, and wind mechanical power of a three-generator power grid system.
We demonstrate that the proposed PhI-GPR method can accurately forecast and estimate both observed and unobserved states.
arXiv Detail & Related papers (2020-10-09T14:18:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.