論文の概要: Exploring the traditional NMT model and Large Language Model for chat translation
- arxiv url: http://arxiv.org/abs/2409.16331v1
- Date: Tue, 24 Sep 2024 08:48:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-27 08:51:05.792758
- Title: Exploring the traditional NMT model and Large Language Model for chat translation
- Title(参考訳): チャット翻訳における従来のNMTモデルとLarge Language Modelの探索
- Authors: Jinlong Yang, Hengchao Shang, Daimeng Wei, Jiaxin Guo, Zongyao Li, Zhanglin Wu, Zhiqiang Rao, Shaojun Li, Yuhao Xie, Yuanchang Luo, Jiawei Zheng, Bin Wei, Hao Yang,
- Abstract要約: 本稿では,Huawei Translation Services Center(HW-TSC)のWMT24チャット翻訳共有タスクへの提出について述べる。
実験では、チャットデータを用いた微調整モデルや、最小ベイズリスク(MBR)復号化や自己学習など、さまざまな戦略を探求した。
- 参考スコア(独自算出の注目度): 10.46281445050683
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper describes the submissions of Huawei Translation Services Center(HW-TSC) to WMT24 chat translation shared task on English$\leftrightarrow$Germany (en-de) bidirection. The experiments involved fine-tuning models using chat data and exploring various strategies, including Minimum Bayesian Risk (MBR) decoding and self-training. The results show significant performance improvements in certain directions, with the MBR self-training method achieving the best results. The Large Language Model also discusses the challenges and potential avenues for further research in the field of chat translation.
- Abstract(参考訳): 本稿では,Huawei Translation Services Center(HW-TSC)のWMT24チャット翻訳共有タスクへの投稿について述べる。
実験では、チャットデータを用いた微調整モデルや、最小ベイズリスク(MBR)復号化や自己学習など、さまざまな戦略を探求した。
その結果, MBR自己学習法により, 一定の方向において高い性能向上が得られた。
大規模言語モデルはまた、チャット翻訳の分野におけるさらなる研究の課題と可能性についても論じている。
関連論文リスト
- Choose the Final Translation from NMT and LLM hypotheses Using MBR Decoding: HW-TSC's Submission to the WMT24 General MT Shared Task [9.819139035652137]
本稿では,Huawei Translate Services Center(HW-TSC)をWMT24汎用機械翻訳(MT)共有タスクに提出する。
我々は、正規化ドロップアウト、双方向トレーニング、データ多様化、前方翻訳、後方翻訳、交互学習、カリキュラム学習、トランスダクティブアンサンブル学習などのトレーニング戦略を用いて、ニューラルマシン翻訳(NMT)モデルをトレーニングする。
論文 参考訳(メタデータ) (2024-09-23T08:25:37Z) - Dynamic data sampler for cross-language transfer learning in large language models [34.464472766868106]
ChatFlowは、言語間移動に基づく大規模言語モデル(LLM)である。
我々は、LLaMA2モデルを継続的に訓練するために、中国語、英語、並列コーパスを組み合わせています。
実験により,本手法はモデル収束を加速し,優れた性能を実現することを示す。
論文 参考訳(メタデータ) (2024-05-17T08:40:51Z) - The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights [108.40766216456413]
大規模言語モデルの英語と非英語のパフォーマンスのギャップを埋めるための質問アライメントフレームワークを提案する。
実験結果から、さまざまな推論シナリオ、モデルファミリー、サイズにわたって、多言語のパフォーマンスを向上できることが示された。
我々は、表現空間、生成された応答とデータスケールを分析し、質問翻訳訓練がLLM内の言語アライメントをどのように強化するかを明らかにする。
論文 参考訳(メタデータ) (2024-05-02T14:49:50Z) - Revisiting Machine Translation for Cross-lingual Classification [91.43729067874503]
この分野のほとんどの研究は、機械翻訳コンポーネントではなく多言語モデルに焦点を当てている。
より強力なMTシステムを用いて、原文のトレーニングと機械翻訳テキストの推論のミスマッチを緩和することにより、翻訳テストは以前想定していたよりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2023-05-23T16:56:10Z) - Unified Model Learning for Various Neural Machine Translation [63.320005222549646]
既存の機械翻訳(NMT)研究は主にデータセット固有のモデルの開発に焦点を当てている。
我々は,NMT(UMLNMT)のための統一モデル学習モデル(Unified Model Learning for NMT)を提案する。
OurNMTは、データセット固有のモデルよりも大幅に改善され、モデルデプロイメントコストが大幅に削減される。
論文 参考訳(メタデータ) (2023-05-04T12:21:52Z) - Evaluating and Improving the Coreference Capabilities of Machine
Translation Models [30.60934078720647]
機械翻訳は幅広い言語能力を必要とする。
現在のエンドツーエンドモデルは、バイリンガルコーパスで一致した文を観察することで暗黙的に学習することが期待されている。
論文 参考訳(メタデータ) (2023-02-16T18:16:09Z) - Beyond Triplet: Leveraging the Most Data for Multimodal Machine
Translation [53.342921374639346]
マルチモーダル機械翻訳は、視覚などの他のモーダルからの情報を取り入れることで、翻訳品質を向上させることを目的としている。
従来のMMTシステムは主に視覚情報へのアクセスと利用に重点を置いており、画像関連データセット上でそれらの手法を検証する傾向がある。
本稿では,MTのための新しい手法と新しいデータセットを確立する。
論文 参考訳(メタデータ) (2022-12-20T15:02:38Z) - Scheduled Multi-task Learning for Neural Chat Translation [66.81525961469494]
ニューラルチャット翻訳(NCT)のためのマルチタスク学習フレームワークを提案する。
具体的には、大規模なドメイン内チャット翻訳データをトレーニングに組み込むための3段階のトレーニングフレームワークを考案する。
提案手法の有効性と優越性を検証するために, 4言語方向の広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-05-08T02:57:28Z) - Modeling Bilingual Conversational Characteristics for Neural Chat
Translation [24.94474722693084]
上記の特性をモデル化して会話テキストの翻訳品質を高めることを目的としている。
我々は、ベンチマークデータセットBConTrasT(英語-ドイツ語)と、BMELD(英語-中国語)という自己コンパイルバイリンガル対話コーパスに対するアプローチを評価した。
我々のアプローチは,強いベースラインよりも高いマージンで性能を向上し,BLEUとTERの観点から,最先端のコンテキスト対応NMTモデルを大幅に上回っている。
論文 参考訳(メタデータ) (2021-07-23T12:23:34Z) - Pre-training Multilingual Neural Machine Translation by Leveraging
Alignment Information [72.2412707779571]
mRASPは、汎用多言語ニューラルマシン翻訳モデルを事前訓練するためのアプローチである。
我々は,低,中,豊かな資源を含む多種多様な環境における42の翻訳方向の実験を行い,エキゾチックな言語対への変換を行った。
論文 参考訳(メタデータ) (2020-10-07T03:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。