RISCORE: Enhancing In-Context Riddle Solving in Language Models through Context-Reconstructed Example Augmentation
- URL: http://arxiv.org/abs/2409.16383v3
- Date: Mon, 30 Sep 2024 06:43:37 GMT
- Title: RISCORE: Enhancing In-Context Riddle Solving in Language Models through Context-Reconstructed Example Augmentation
- Authors: Ioannis Panagiotopoulos, Giorgos Filandrianos, Maria Lymperaiou, Giorgos Stamou,
- Abstract summary: This paper explores how different prompting techniques impact performance on riddles that demand diverse reasoning skills.
We introduce RISCORE, a fully automated prompting method that generates and utilizes contextually reconstructed sentence-based puzzles.
Our experiments demonstrate that RISCORE significantly improves the performance of language models in both vertical and lateral thinking tasks.
- Score: 1.9939549451457024
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Riddle-solving requires advanced reasoning skills, pushing LLMs to engage in abstract thinking and creative problem-solving, often revealing limitations in their cognitive abilities. In this paper, we examine the riddle-solving capabilities of LLMs using a multiple-choice format, exploring how different prompting techniques impact performance on riddles that demand diverse reasoning skills. To enhance results, we introduce RISCORE (RIddle Solving with COntext REcontruciton) a novel fully automated prompting method that generates and utilizes contextually reconstructed sentence-based puzzles in conjunction with the original examples to create few-shot exemplars. Our experiments demonstrate that RISCORE significantly improves the performance of language models in both vertical and lateral thinking tasks, surpassing traditional exemplar selection strategies across a variety of few-shot settings.
Related papers
- BloomWise: Enhancing Problem-Solving capabilities of Large Language Models using Bloom's-Taxonomy-Inspired Prompts [59.83547898874152]
We introduce BloomWise, a new prompting technique, inspired by Bloom's taxonomy, to improve the performance of Large Language Models (LLMs)
The decision regarding the need to employ more sophisticated cognitive skills is based on self-evaluation performed by the LLM.
In extensive experiments across 4 popular math reasoning datasets, we have demonstrated the effectiveness of our proposed approach.
arXiv Detail & Related papers (2024-10-05T09:27:52Z) - Retrieval Meets Reasoning: Dynamic In-Context Editing for Long-Text Understanding [11.5386284281652]
We introduce a novel approach that re-imagines information retrieval through dynamic in-context editing.
By treating lengthy contexts as malleable external knowledge, our method interactively gathers and integrates relevant information.
Experimental results demonstrate that our method effectively empowers context-limited LLMs to engage in multi-hop reasoning with improved performance.
arXiv Detail & Related papers (2024-06-18T06:54:28Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
We argue that converging visual context acquisition and logical reasoning is pivotal for tackling visual reasoning tasks.
We propose an innovative multimodal CoT framework, termed Cantor, characterized by a perception-decision architecture.
Our experiments demonstrate the efficacy of the proposed framework, showing significant improvements in multimodal CoT performance.
arXiv Detail & Related papers (2024-04-24T17:59:48Z) - Puzzle Solving using Reasoning of Large Language Models: A Survey [1.9939549451457024]
This survey examines the capabilities of Large Language Models (LLMs) in puzzle solving.
Our findings highlight the disparity between LLM capabilities and human-like reasoning.
The survey underscores the necessity for novel strategies and richer datasets to advance LLMs' puzzle-solving proficiency.
arXiv Detail & Related papers (2024-02-17T14:19:38Z) - Boosting of Thoughts: Trial-and-Error Problem Solving with Large
Language Models [48.43678591317425]
Boosting of Thoughts (BoT) is an automated prompting framework for problem solving with Large Language Models.
We show that BoT consistently achieves higher or comparable problem-solving rates than other advanced prompting approaches.
arXiv Detail & Related papers (2024-02-17T00:13:36Z) - Self-Convinced Prompting: Few-Shot Question Answering with Repeated
Introspection [13.608076739368949]
We introduce a novel framework that harnesses the potential of large-scale pre-trained language models.
Our framework processes the output of a typical few-shot chain-of-thought prompt, assesses the correctness of the response, scrutinizes the answer, and ultimately produces a new solution.
arXiv Detail & Related papers (2023-10-08T06:36:26Z) - Language Models as Knowledge Bases for Visual Word Sense Disambiguation [1.8591405259852054]
We propose some knowledge-enhancement techniques towards improving the retrieval performance of visiolinguistic (VL) transformers.
More specifically, knowledge stored in Large Language Models (LLMs) is retrieved with the help of appropriate prompts in a zero-shot manner.
Our presented approach is the first one to analyze the merits of exploiting knowledge stored in LLMs in different ways to solve Visual Word Sense Disambiguation.
arXiv Detail & Related papers (2023-10-03T11:11:55Z) - Large Language Models as Analogical Reasoners [155.9617224350088]
Chain-of-thought (CoT) prompting for language models demonstrates impressive performance across reasoning tasks.
We introduce a new prompting approach, analogical prompting, designed to automatically guide the reasoning process of large language models.
arXiv Detail & Related papers (2023-10-03T00:57:26Z) - Self-Explanation Prompting Improves Dialogue Understanding in Large
Language Models [52.24756457516834]
We propose a novel "Self-Explanation" prompting strategy to enhance the comprehension abilities of Large Language Models (LLMs)
This task-agnostic approach requires the model to analyze each dialogue utterance before task execution, thereby improving performance across various dialogue-centric tasks.
Experimental results from six benchmark datasets confirm that our method consistently outperforms other zero-shot prompts and matches or exceeds the efficacy of few-shot prompts.
arXiv Detail & Related papers (2023-09-22T15:41:34Z) - Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate [85.3444184685235]
We propose a Multi-Agent Debate (MAD) framework, in which multiple agents express their arguments in the state of "tit for tat" and a judge manages the debate process to obtain a final solution.
Our framework encourages divergent thinking in LLMs which would be helpful for tasks that require deep levels of contemplation.
arXiv Detail & Related papers (2023-05-30T15:25:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.