論文の概要: A Comprehensive Survey of Bias in LLMs: Current Landscape and Future Directions
- arxiv url: http://arxiv.org/abs/2409.16430v1
- Date: Tue, 24 Sep 2024 19:50:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-27 08:21:10.229984
- Title: A Comprehensive Survey of Bias in LLMs: Current Landscape and Future Directions
- Title(参考訳): LLMにおけるバイアスの包括的調査--現況と今後の展望
- Authors: Rajesh Ranjan, Shailja Gupta, Surya Narayan Singh,
- Abstract要約: 大規模言語モデル(LLM)は、前例のないテキスト生成、翻訳、理解能力を提供することで、自然言語処理(NLP)の様々な応用に革命をもたらした。
彼らの広範な展開は、これらのモデルに埋め込まれたバイアスに関して、重大な懸念をもたらしました。
本稿では, LLMにおけるバイアスの包括的調査を行い, これらのバイアスに関するタイプ, ソース, 影響, 緩和戦略について, 広範なレビューを行うことを目的としている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Language Models(LLMs) have revolutionized various applications in natural language processing (NLP) by providing unprecedented text generation, translation, and comprehension capabilities. However, their widespread deployment has brought to light significant concerns regarding biases embedded within these models. This paper presents a comprehensive survey of biases in LLMs, aiming to provide an extensive review of the types, sources, impacts, and mitigation strategies related to these biases. We systematically categorize biases into several dimensions. Our survey synthesizes current research findings and discusses the implications of biases in real-world applications. Additionally, we critically assess existing bias mitigation techniques and propose future research directions to enhance fairness and equity in LLMs. This survey serves as a foundational resource for researchers, practitioners, and policymakers concerned with addressing and understanding biases in LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)は、前例のないテキスト生成、翻訳、理解能力を提供することで、自然言語処理(NLP)の様々な応用に革命をもたらした。
しかしながら、その広範な展開は、これらのモデルに埋め込まれたバイアスに関する重大な懸念をもたらしている。
本稿では, LLMにおけるバイアスの包括的調査を行い, これらのバイアスに関するタイプ, ソース, 影響, 緩和戦略について, 広範なレビューを行うことを目的としている。
我々はバイアスをいくつかの次元に体系的に分類する。
本研究は,現在の研究成果を総合的に分析し,現実の応用におけるバイアスの影響について考察する。
さらに,既存のバイアス緩和手法を批判的に評価し,LLMの公平性と公平性を高めるための今後の研究方向を提案する。
この調査は、LLMのバイアスに対処し、理解することに関心を持つ研究者、実践者、政策立案者の基盤となるリソースとして機能する。
関連論文リスト
- Bias in Large Language Models: Origin, Evaluation, and Mitigation [4.606140332500086]
大規模言語モデル(LLM)は自然言語処理に革命をもたらしたが、バイアスへの感受性は大きな課題となっている。
本総説では, LLMの発端から現在の緩和戦略まで, バイアスの背景を概観する。
偏りのあるLLMの倫理的および法的含意について論じ、医療や刑事司法のような現実の応用における潜在的な害を強調した。
論文 参考訳(メタデータ) (2024-11-16T23:54:53Z) - Benchmarking Bias in Large Language Models during Role-Playing [21.28427555283642]
ロールプレイングにおいて,Large Language Models (LLMs) のバイアスを明らかにするために設計されたフェアネステストフレームワークであるBiasLensを紹介した。
提案手法では,11の属性からなる包括的属性からなる550個のソーシャルロールをLCMを用いて生成し,33,000個のロール固有の質問を生成する。
生成された質問をベンチマークとして、OpenAI、Mistral AI、Meta、Alibaba、DeepSeekがリリースした6つの高度なLCMの広範な評価を行う。
我々のベンチマークでは、LLM全体で72,716の偏りが見られ、個々のモデルは7,754から16,963の偏りが生じる。
論文 参考訳(メタデータ) (2024-11-01T13:47:00Z) - CEB: Compositional Evaluation Benchmark for Fairness in Large Language Models [58.57987316300529]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクを処理するために、ますます多くデプロイされている。
LLMが示すバイアスを評価するために、研究者は最近、様々なデータセットを提案している。
我々は,様々な社会的グループやタスクにまたがる様々なバイアスをカバーした構成的評価ベンチマークであるCEBを提案する。
論文 参考訳(メタデータ) (2024-07-02T16:31:37Z) - The African Woman is Rhythmic and Soulful: An Investigation of Implicit Biases in LLM Open-ended Text Generation [3.9945212716333063]
大規模言語モデル(LLM)による決定に影響を与えるため、暗黙のバイアスは重要である。
伝統的に、明示的なバイアステストや埋め込みベースの手法はバイアスを検出するために使用されるが、これらのアプローチはより微妙で暗黙的なバイアスの形式を見落としることができる。
提案手法は, 暗黙の偏見を明らかにするために, 即発的, 意思決定的タスクによる2つの新しい心理学的手法を導入している。
論文 参考訳(メタデータ) (2024-07-01T13:21:33Z) - Quantifying Generative Media Bias with a Corpus of Real-world and Generated News Articles [12.356251871670011]
大規模言語モデル(LLM)は、タスクやドメインにまたがってますます活用されてきている。
本研究では、政治バイアスに着目し、教師付きモデルとLLMの両方を用いて検出する。
ジャーナリストの領域内ではじめて、この研究は定量化実験の枠組みを概説した。
論文 参考訳(メタデータ) (2024-06-16T01:32:04Z) - Investigating Bias in LLM-Based Bias Detection: Disparities between LLMs and Human Perception [13.592532358127293]
大規模言語モデル(LLM)におけるバイアスの存在と性質について検討する。
LLMが特に政治的バイアス予測やテキスト継続タスクにおいてバイアスを示すかどうかを調査する。
我々は,素早い工学とモデル微調整を含む脱バイアス戦略を提案する。
論文 参考訳(メタデータ) (2024-03-22T00:59:48Z) - Exploring Value Biases: How LLMs Deviate Towards the Ideal [57.99044181599786]
LLM(Large-Language-Models)は幅広いアプリケーションにデプロイされ、その応答は社会的影響を増大させる。
価値バイアスは、人間の研究結果と同様、異なるカテゴリにわたるLSMにおいて強いことが示される。
論文 参考訳(メタデータ) (2024-02-16T18:28:43Z) - GPTBIAS: A Comprehensive Framework for Evaluating Bias in Large Language
Models [83.30078426829627]
大規模言語モデル(LLM)は人気を集め、大規模なユーザコミュニティで広く採用されている。
既存の評価手法には多くの制約があり、それらの結果は限定的な解釈可能性を示している。
本稿では,LPMの高性能性を活用し,モデル内のバイアスを評価するGPTBIASというバイアス評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-11T12:02:14Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
大規模言語モデル(LLM)は、これらのモデルにおけるバイアスの頻度とその緩和に関する激しい議論を引き起こしている。
本稿では,意思決定プロセスに寄与する属性の抽出と仲介を行うためのプロンプトベースの手法を提案する。
観察された異なる治療は、少なくとも部分的には、属性の相違とモデルの相違によるものであることが判明した。
論文 参考訳(メタデータ) (2023-11-15T00:02:25Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - Information Extraction in Low-Resource Scenarios: Survey and Perspective [56.5556523013924]
情報抽出は構造化されていないテキストから構造化された情報を導き出そうとする。
本稿では,emphLLMおよびemphLLMに基づく低リソースIEに対するニューラルアプローチについて概説する。
論文 参考訳(メタデータ) (2022-02-16T13:44:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。