論文の概要: Spelling Correction through Rewriting of Non-Autoregressive ASR Lattices
- arxiv url: http://arxiv.org/abs/2409.16469v1
- Date: Tue, 24 Sep 2024 21:42:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-27 08:21:10.129075
- Title: Spelling Correction through Rewriting of Non-Autoregressive ASR Lattices
- Title(参考訳): 非自己回帰型ASR格子の書き換えによる補正
- Authors: Leonid Velikovich, Christopher Li, Diamantino Caseiro, Shankar Kumar, Pat Rondon, Kandarp Joshi, Xavier Velez,
- Abstract要約: 本稿では,トランスフォーマーを用いたCTCモデルにより生成されたワードピース格子を書き換える有限状態トランスデューサ(FST)手法を提案する。
本アルゴリズムは,単語から音素への変換を直接行うため,明示的な単語表現を避けることができる。
文脈関連エンティティを用いたテストにおいて, 文誤り率(SER)の15.2%の相対的低減を実現した。
- 参考スコア(独自算出の注目度): 8.77712061194924
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For end-to-end Automatic Speech Recognition (ASR) models, recognizing personal or rare phrases can be hard. A promising way to improve accuracy is through spelling correction (or rewriting) of the ASR lattice, where potentially misrecognized phrases are replaced with acoustically similar and contextually relevant alternatives. However, rewriting is challenging for ASR models trained with connectionist temporal classification (CTC) due to noisy hypotheses produced by a non-autoregressive, context-independent beam search. We present a finite-state transducer (FST) technique for rewriting wordpiece lattices generated by Transformer-based CTC models. Our algorithm performs grapheme-to-phoneme (G2P) conversion directly from wordpieces into phonemes, avoiding explicit word representations and exploiting the richness of the CTC lattice. Our approach requires no retraining or modification of the ASR model. We achieved up to a 15.2% relative reduction in sentence error rate (SER) on a test set with contextually relevant entities.
- Abstract(参考訳): エンドツーエンド自動音声認識(ASR)モデルでは、個人または稀なフレーズを認識することは困難である。
精度を向上させるための有望な方法は、誤認識されたフレーズを音響的に類似し、文脈的に関係のある代替語に置き換える、ASR格子のスペル修正(または書き換え)である。
しかし、非自己回帰的、文脈に依存しないビームサーチによって生じるノイズ仮説により、コネクショニスト時間分類(CTC)で訓練されたASRモデルでは書き換えが困難である。
本稿では,トランスフォーマーを用いたCTCモデルにより生成されたワードピース格子を書き換える有限状態トランスデューサ(FST)手法を提案する。
提案アルゴリズムは,単語ピースから音素への変換を直接行い,明示的な単語表現を避け,CTC格子のリッチさを活用する。
我々のアプローチでは、ASRモデルの再訓練や修正は必要ありません。
文脈関連エンティティを用いたテストにおいて, 文誤り率(SER)の15.2%の相対的低減を実現した。
関連論文リスト
- Error Correction by Paying Attention to Both Acoustic and Confidence References for Automatic Speech Recognition [52.624909026294105]
本稿では,非自己回帰型音声誤り訂正法を提案する。
信頼モジュールは、N-best ASR仮説の各単語の不確実性を測定する。
提案方式は,ASRモデルと比較して誤差率を21%削減する。
論文 参考訳(メタデータ) (2024-06-29T17:56:28Z) - Fast Context-Biasing for CTC and Transducer ASR models with CTC-based Word Spotter [57.64003871384959]
この研究は、CTCベースのWord Spotterでコンテキストバイアスを高速化するための新しいアプローチを示す。
提案手法は,CTCログ確率をコンパクトなコンテキストグラフと比較し,潜在的なコンテキストバイアス候補を検出する。
その結果、FスコアとWERの同時改善により、文脈バイアス認識の大幅な高速化が示された。
論文 参考訳(メタデータ) (2024-06-11T09:37:52Z) - Whispering LLaMA: A Cross-Modal Generative Error Correction Framework
for Speech Recognition [10.62060432965311]
自動音声認識(ASR)における生成誤り訂正のための新しいクロスモーダル融合手法を提案する。
提案手法は,音響情報と外部言語表現の両方を利用して,正確な音声の書き起こしコンテキストを生成する。
論文 参考訳(メタデータ) (2023-10-10T09:04:33Z) - Chinese Spelling Correction as Rephrasing Language Model [63.65217759957206]
文中のスペル誤りを検知し,訂正することを目的とした中国語スペル補正(CSC)について検討する。
現在の最先端の手法は、CSCをシーケンスタギングタスクと文対上の細いBERTベースのモデルとみなしている。
本稿では,文字から文字へのタグ付けではなく,追加のスロットを埋め込むことで文全体を言い換える言語モデル(ReLM)を提案する。
論文 参考訳(メタデータ) (2023-08-17T06:04:28Z) - SpellMapper: A non-autoregressive neural spellchecker for ASR
customization with candidate retrieval based on n-gram mappings [76.87664008338317]
文脈スペル補正モデルは、音声認識を改善するために浅い融合に代わるものである。
ミススペルn-gramマッピングに基づく候補探索のための新しいアルゴリズムを提案する。
Spoken Wikipediaの実験では、ベースラインのASRシステムに比べて21.4%のワードエラー率の改善が見られた。
論文 参考訳(メタデータ) (2023-06-04T10:00:12Z) - Label-Synchronous Speech-to-Text Alignment for ASR Using Forward and
Backward Transformers [49.403414751667135]
本稿では,音声認識のための新しいラベル同期音声テキストアライメント手法を提案する。
提案手法はラベル同期テキストマッピング問題として音声からテキストへのアライメントを再定義する。
自発日本語コーパス(CSJ)を用いた実験により,提案手法が正確な発話方向のアライメントを提供することを示した。
論文 参考訳(メタデータ) (2021-04-21T03:05:12Z) - Advanced Long-context End-to-end Speech Recognition Using
Context-expanded Transformers [56.56220390953412]
コンフォーメータアーキテクチャを導入することで、精度をさらに向上させ、以前の作業を拡張します。
拡張トランスフォーマーは、最先端のエンドツーエンドのASR性能を提供する。
論文 参考訳(メタデータ) (2021-04-19T16:18:00Z) - Hallucination of speech recognition errors with sequence to sequence
learning [16.39332236910586]
プレーンテキストデータを使用して話し言葉理解やASRのためのシステムのトレーニングを行う場合、証明された戦略は、ASR出力が金の転写を与えるであろうものを幻覚することです。
本稿では,asr語列の幻覚的出力,入力語列の条件づけ,対応する音素列を直接予測する新しいエンドツーエンドモデルを提案する。
これにより、ドメイン内ASRシステムの未確認データの転写からのエラーのリコール、およびドメイン外ASRシステムの非関連タスクからのオーディオの転写の以前の結果が改善されます。
論文 参考訳(メタデータ) (2021-03-23T02:09:39Z) - Adapting End-to-End Speech Recognition for Readable Subtitles [15.525314212209562]
サブタイリングのようないくつかのユースケースでは、画面サイズや読み込み時間に制限があるため、動詞の文字起こしは出力の可読性を低下させる。
まず,教師なし圧縮モデルを用いて書き起こされた音声を後編集するカスケードシステムについて検討する。
実験により、モデルをスクラッチからトレーニングするために必要なデータよりもはるかに少ないデータで、TransformerベースのASRモデルを適用して、書き起こし機能と圧縮機能の両方を組み込むことが可能であることが示されている。
論文 参考訳(メタデータ) (2020-05-25T14:42:26Z) - Reducing Spelling Inconsistencies in Code-Switching ASR using
Contextualized CTC Loss [5.707652271634435]
本研究では,スペル合成の促進を目的とした文脈接続性時間分類(CCTC)の損失を提案する。
CCTC損失は、モデルの推定経路からコンテキスト基底真理を得るため、フレームレベルのアライメントを必要としない。
CSと単言語コーパスの両方において,通常のCTC損失をトレーニングしたモデルと比較して,ASR性能は一貫して改善した。
論文 参考訳(メタデータ) (2020-05-16T09:36:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。