Churn-Aware Recommendation Planning under Aggregated Preference Feedback
- URL: http://arxiv.org/abs/2507.04513v1
- Date: Sun, 06 Jul 2025 19:22:47 GMT
- Title: Churn-Aware Recommendation Planning under Aggregated Preference Feedback
- Authors: Gur Keinan, Omer Ben-Porat,
- Abstract summary: We study a sequential decision-making problem motivated by recent regulatory and technological shifts.<n>We introduce the Rec-APC model, in which an anonymous user is drawn from a known prior over latent user types.<n>We prove that optimal policies converge to pure exploitation in finite time and propose a branch-and-bound algorithm to efficiently compute them.
- Score: 6.261444979025644
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study a sequential decision-making problem motivated by recent regulatory and technological shifts that limit access to individual user data in recommender systems (RSs), leaving only population-level preference information. This privacy-aware setting poses fundamental challenges in planning under uncertainty: Effective personalization requires exploration to infer user preferences, yet unsatisfactory recommendations risk immediate user churn. To address this, we introduce the Rec-APC model, in which an anonymous user is drawn from a known prior over latent user types (e.g., personas or clusters), and the decision-maker sequentially selects items to recommend. Feedback is binary -- positive responses refine the posterior via Bayesian updates, while negative responses result in the termination of the session. We prove that optimal policies converge to pure exploitation in finite time and propose a branch-and-bound algorithm to efficiently compute them. Experiments on synthetic and MovieLens data confirm rapid convergence and demonstrate that our method outperforms the POMDP solver SARSOP, particularly when the number of user types is large or comparable to the number of content categories. Our results highlight the applicability of this approach and inspire new ways to improve decision-making under the constraints imposed by aggregated preference data.
Related papers
- Multi-agents based User Values Mining for Recommendation [52.26100802380767]
We propose a zero-shot multi-LLM collaborative framework for effective and accurate user value extraction.<n>We apply text summarization techniques to condense item content while preserving essential meaning.<n>To mitigate hallucinations, we introduce two specialized agent roles: evaluators and supervisors.
arXiv Detail & Related papers (2025-05-02T04:01:31Z) - Sharpe Ratio-Guided Active Learning for Preference Optimization in RLHF [67.48004037550064]
We propose an active learning approach to efficiently select prompt and preference pairs.<n>Our method evaluates the gradients of all potential preference annotations to assess their impact on model updates.<n> Experimental results demonstrate that our method outperforms the baseline by up to 5% in win rates against the chosen completion.
arXiv Detail & Related papers (2025-03-28T04:22:53Z) - Modeling Churn in Recommender Systems with Aggregated Preferences [6.261444979025644]
We propose a model that addresses the dual challenges of leveraging aggregated user information and mitigating churn risk.<n>Our model assumes that the RS operates with a probabilistic prior over user types and aggregated satisfaction levels for various content types.
arXiv Detail & Related papers (2025-02-09T13:12:11Z) - Quantifying User Coherence: A Unified Framework for Cross-Domain Recommendation Analysis [69.37718774071793]
This paper introduces novel information-theoretic measures for understanding recommender systems.
We evaluate 7 recommendation algorithms across 9 datasets, revealing the relationships between our measures and standard performance metrics.
arXiv Detail & Related papers (2024-10-03T13:02:07Z) - Algorithmic Drift: A Simulation Framework to Study the Effects of Recommender Systems on User Preferences [7.552217586057245]
We propose a simulation framework that mimics user-recommender system interactions in a long-term scenario.
We introduce two novel metrics for quantifying the algorithm's impact on user preferences, specifically in terms of drift over time.
arXiv Detail & Related papers (2024-09-24T21:54:22Z) - CSRec: Rethinking Sequential Recommendation from A Causal Perspective [25.69446083970207]
The essence of sequential recommender systems (RecSys) lies in understanding how users make decisions.
We propose a novel formulation of sequential recommendation, termed Causal Sequential Recommendation (CSRec)
CSRec aims to predict the probability of a recommended item's acceptance within a sequential context and backtrack how current decisions are made.
arXiv Detail & Related papers (2024-08-23T23:19:14Z) - The MovieLens Beliefs Dataset: Collecting Pre-Choice Data for Online Recommender Systems [0.0]
This paper introduces a method for collecting user beliefs about unexperienced items - a critical predictor of choice behavior.
We implement this method on the MovieLens platform, resulting in a rich dataset that combines user ratings, beliefs, and observed recommendations.
arXiv Detail & Related papers (2024-05-17T19:06:06Z) - Explainable Active Learning for Preference Elicitation [0.0]
We employ Active Learning (AL) to solve the addressed problem with the objective of maximizing information acquisition with minimal user effort.
AL operates for selecting informative data from a large unlabeled set to inquire an oracle to label them.
It harvests user feedback (given for the system's explanations on the presented items) over informative samples to update an underlying machine learning (ML) model.
arXiv Detail & Related papers (2023-09-01T09:22:33Z) - Vague Preference Policy Learning for Conversational Recommendation [48.868921530958666]
Conversational recommendation systems commonly assume users have clear preferences, leading to potential over-filtering.<n>We introduce the Vague Preference Multi-round Conversational Recommendation (VPMCR) scenario, employing a soft estimation mechanism to accommodate users' vague and dynamic preferences.<n>Our work advances CRS by accommodating users' inherent ambiguity and relative decision-making processes, improving real-world applicability.
arXiv Detail & Related papers (2023-06-07T14:57:21Z) - Personalized Algorithmic Recourse with Preference Elicitation [20.78332455864586]
We introduce PEAR, the first human-in-the-loop approach capable of providing personalized algorithmic recourse tailored to the needs of any end-user.
PEAR builds on insights from Bayesian Preference Elicitation to iteratively refine an estimate of the costs of actions by asking choice set queries to the target user.
Our empirical evaluation on real-world datasets highlights how PEAR produces high-quality personalized recourse in only a handful of iterations.
arXiv Detail & Related papers (2022-05-27T03:12:18Z) - Control Variates for Slate Off-Policy Evaluation [112.35528337130118]
We study the problem of off-policy evaluation from batched contextual bandit data with multidimensional actions.
We obtain new estimators with risk improvement guarantees over both the PI and self-normalized PI estimators.
arXiv Detail & Related papers (2021-06-15T06:59:53Z) - Reward Constrained Interactive Recommendation with Natural Language
Feedback [158.8095688415973]
We propose a novel constraint-augmented reinforcement learning (RL) framework to efficiently incorporate user preferences over time.
Specifically, we leverage a discriminator to detect recommendations violating user historical preference.
Our proposed framework is general and is further extended to the task of constrained text generation.
arXiv Detail & Related papers (2020-05-04T16:23:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.