A QoE-Aware Split Inference Accelerating Algorithm for NOMA-based Edge Intelligence
- URL: http://arxiv.org/abs/2409.16537v1
- Date: Wed, 25 Sep 2024 01:09:45 GMT
- Title: A QoE-Aware Split Inference Accelerating Algorithm for NOMA-based Edge Intelligence
- Authors: Xin Yuan, Ning Li, Quan Chen, Wenchao Xu, Zhaoxin Zhang, Song Guo,
- Abstract summary: An effective resource allocation algorithm is proposed in this paper, for accelerating split inference in edge intelligence.
The ERA takes the resource consumption, QoE, and inference latency into account to find the optimal model split strategy and resource allocation strategy.
The experimental results demonstrate that the performance of ERA is much better than that of the previous studies.
- Score: 20.67035066213381
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Even the AI has been widely used and significantly changed our life, deploying the large AI models on resource limited edge devices directly is not appropriate. Thus, the model split inference is proposed to improve the performance of edge intelligence, in which the AI model is divided into different sub models and the resource-intensive sub model is offloaded to edge server wirelessly for reducing resource requirements and inference latency. However, the previous works mainly concentrate on improving and optimizing the system QoS, ignore the effect of QoE which is another critical item for the users except for QoS. Even the QoE has been widely learned in EC, considering the differences between task offloading in EC and split inference in EI, and the specific issues in QoE which are still not addressed in EC and EI, these algorithms cannot work effectively in edge split inference scenarios. Thus, an effective resource allocation algorithm is proposed in this paper, for accelerating split inference in EI and achieving the tradeoff between inference delay, QoE, and resource consumption, abbreviated as ERA. Specifically, the ERA takes the resource consumption, QoE, and inference latency into account to find the optimal model split strategy and resource allocation strategy. Since the minimum inference delay and resource consumption, and maximum QoE cannot be satisfied simultaneously, the gradient descent based algorithm is adopted to find the optimal tradeoff between them. Moreover, the loop iteration GD approach is developed to reduce the complexity of the GD algorithm caused by parameter discretization. Additionally, the properties of the proposed algorithms are investigated, including convergence, complexity, and approximation error. The experimental results demonstrate that the performance of ERA is much better than that of the previous studies.
Related papers
- Two-Timescale Model Caching and Resource Allocation for Edge-Enabled AI-Generated Content Services [55.0337199834612]
Generative AI (GenAI) has emerged as a transformative technology, enabling customized and personalized AI-generated content (AIGC) services.
These services require executing GenAI models with billions of parameters, posing significant obstacles to resource-limited wireless edge.
We introduce the formulation of joint model caching and resource allocation for AIGC services to balance a trade-off between AIGC quality and latency metrics.
arXiv Detail & Related papers (2024-11-03T07:01:13Z) - Edge Intelligence Optimization for Large Language Model Inference with Batching and Quantization [20.631476379056892]
Large Language Models (LLMs) are at the forefront of this movement.
LLMs require cloud hosting, which raises issues regarding privacy, latency, and usage limitations.
We present an edge intelligence optimization problem tailored for LLM inference.
arXiv Detail & Related papers (2024-05-12T02:38:58Z) - Mobility and Cost Aware Inference Accelerating Algorithm for Edge
Intelligence [24.512525338942158]
The edge intelligence (EI) has been widely applied recently. Spliting the model between device, edge server, and cloud can improve the performance of EI greatly.
The model segmentation without user mobility has been investigated deeply by previous works.
We propose mobility and cost aware model segmentation and resource allocation algorithm for accelerating the inference at edge.
arXiv Detail & Related papers (2023-12-27T10:04:02Z) - High Efficiency Inference Accelerating Algorithm for NOMA-based Mobile
Edge Computing [23.88527790721402]
Splitting the inference model between device, edge server, and cloud can improve the performance of EI greatly.
NOMA, which is the key supporting technologies of B5G/6G, can achieve massive connections and high spectrum efficiency.
We propose the effective communication and computing resource allocation algorithm to accelerate the model inference at edge.
arXiv Detail & Related papers (2023-12-26T02:05:52Z) - Differentially Private Deep Q-Learning for Pattern Privacy Preservation
in MEC Offloading [76.0572817182483]
attackers may eavesdrop on the offloading decisions to infer the edge server's (ES's) queue information and users' usage patterns.
We propose an offloading strategy which jointly minimizes the latency, ES's energy consumption, and task dropping rate, while preserving pattern privacy (PP)
We develop a Differential Privacy Deep Q-learning based Offloading (DP-DQO) algorithm to solve this problem while addressing the PP issue by injecting noise into the generated offloading decisions.
arXiv Detail & Related papers (2023-02-09T12:50:18Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - Regret Bounds for Expected Improvement Algorithms in Gaussian Process
Bandit Optimization [63.8557841188626]
The expected improvement (EI) algorithm is one of the most popular strategies for optimization under uncertainty.
We propose a variant of EI with a standard incumbent defined via the GP predictive mean.
We show that our algorithm converges, and achieves a cumulative regret bound of $mathcal O(gamma_TsqrtT)$.
arXiv Detail & Related papers (2022-03-15T13:17:53Z) - DESTRESS: Computation-Optimal and Communication-Efficient Decentralized
Nonconvex Finite-Sum Optimization [43.31016937305845]
Internet-of-things, networked sensing, autonomous systems and federated learning call for decentralized algorithms for finite-sum optimizations.
We develop DEcentralized STochastic REcurSive methodDESTRESS for non finite-sum optimization.
Detailed theoretical and numerical comparisons show that DESTRESS improves upon prior decentralized algorithms.
arXiv Detail & Related papers (2021-10-04T03:17:41Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z) - Deep unfolding of the weighted MMSE beamforming algorithm [9.518010235273783]
We propose the novel application of deep unfolding to the WMMSE algorithm for a MISO downlink channel.
Deep unfolding naturally incorporates expert knowledge, with the benefits of immediate and well-grounded architecture selection, fewer trainable parameters, and better explainability.
By means of simulations, we show that, in most of the settings, the unfolded WMMSE outperforms or performs equally to the WMMSE for a fixed number of iterations.
arXiv Detail & Related papers (2020-06-15T14:51:20Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.