Learning Representation for Multitask learning through Self Supervised Auxiliary learning
- URL: http://arxiv.org/abs/2409.16651v1
- Date: Wed, 25 Sep 2024 06:08:35 GMT
- Title: Learning Representation for Multitask learning through Self Supervised Auxiliary learning
- Authors: Seokwon Shin, Hyungrok Do, Youngdoo Son,
- Abstract summary: In the hard parameter sharing approach, an encoder shared through multiple tasks generates data representations passed to task-specific predictors.
We propose Dummy Gradient norm Regularization that aims to improve the universality of the representations generated by the shared encoder.
We show that DGR effectively improves the quality of the shared representations, leading to better multi-task prediction performances.
- Score: 3.236198583140341
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multi-task learning is a popular machine learning approach that enables simultaneous learning of multiple related tasks, improving algorithmic efficiency and effectiveness. In the hard parameter sharing approach, an encoder shared through multiple tasks generates data representations passed to task-specific predictors. Therefore, it is crucial to have a shared encoder that provides decent representations for every and each task. However, despite recent advances in multi-task learning, the question of how to improve the quality of representations generated by the shared encoder remains open. To address this gap, we propose a novel approach called Dummy Gradient norm Regularization that aims to improve the universality of the representations generated by the shared encoder. Specifically, the method decreases the norm of the gradient of the loss function with repect to dummy task-specific predictors to improve the universality of the shared encoder's representations. Through experiments on multiple multi-task learning benchmark datasets, we demonstrate that DGR effectively improves the quality of the shared representations, leading to better multi-task prediction performances. Applied to various classifiers, the shared representations generated by DGR also show superior performance compared to existing multi-task learning methods. Moreover, our approach takes advantage of computational efficiency due to its simplicity. The simplicity also allows us to seamlessly integrate DGR with the existing multi-task learning algorithms.
Related papers
- Sharing Knowledge in Multi-Task Deep Reinforcement Learning [57.38874587065694]
We study the benefit of sharing representations among tasks to enable the effective use of deep neural networks in Multi-Task Reinforcement Learning.
We prove this by providing theoretical guarantees that highlight the conditions for which is convenient to share representations among tasks.
arXiv Detail & Related papers (2024-01-17T19:31:21Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
arXiv Detail & Related papers (2024-01-02T14:18:11Z) - Provable Benefits of Multi-task RL under Non-Markovian Decision Making
Processes [56.714690083118406]
In multi-task reinforcement learning (RL) under Markov decision processes (MDPs), the presence of shared latent structures has been shown to yield significant benefits to the sample efficiency compared to single-task RL.
We investigate whether such a benefit can extend to more general sequential decision making problems, such as partially observable MDPs (POMDPs) and more general predictive state representations (PSRs)
We propose a provably efficient algorithm UMT-PSR for finding near-optimal policies for all PSRs, and demonstrate that the advantage of multi-task learning manifests if the joint model class of PSR
arXiv Detail & Related papers (2023-10-20T14:50:28Z) - Visual Exemplar Driven Task-Prompting for Unified Perception in
Autonomous Driving [100.3848723827869]
We present an effective multi-task framework, VE-Prompt, which introduces visual exemplars via task-specific prompting.
Specifically, we generate visual exemplars based on bounding boxes and color-based markers, which provide accurate visual appearances of target categories.
We bridge transformer-based encoders and convolutional layers for efficient and accurate unified perception in autonomous driving.
arXiv Detail & Related papers (2023-03-03T08:54:06Z) - Robust Unsupervised Multi-task and Transfer Learning on Gaussian Mixture Models [13.07916598175886]
We study the multi-task learning problem on GMMs.
We propose a multi-task GMM learning procedure based on the EM algorithm.
We generalize our approach to tackle the problem of transfer learning for GMMs.
arXiv Detail & Related papers (2022-09-30T04:35:12Z) - Provable Benefit of Multitask Representation Learning in Reinforcement
Learning [46.11628795660159]
This paper theoretically characterizes the benefit of representation learning under the low-rank Markov decision process (MDP) model.
To the best of our knowledge, this is the first theoretical study that characterizes the benefit of representation learning in exploration-based reward-free multitask reinforcement learning.
arXiv Detail & Related papers (2022-06-13T04:29:02Z) - Leveraging convergence behavior to balance conflicting tasks in
multi-task learning [3.6212652499950138]
Multi-Task Learning uses correlated tasks to improve performance generalization.
Tasks often conflict with each other, which makes it challenging to define how the gradients of multiple tasks should be combined.
We propose a method that takes into account temporal behaviour of the gradients to create a dynamic bias that adjust the importance of each task during the backpropagation.
arXiv Detail & Related papers (2022-04-14T01:52:34Z) - Multi-task Over-the-Air Federated Learning: A Non-Orthogonal
Transmission Approach [52.85647632037537]
We propose a multi-task over-theair federated learning (MOAFL) framework, where multiple learning tasks share edge devices for data collection and learning models under the coordination of a edge server (ES)
Both the convergence analysis and numerical results demonstrate that the MOAFL framework can significantly reduce the uplink bandwidth consumption of multiple tasks without causing substantial learning performance degradation.
arXiv Detail & Related papers (2021-06-27T13:09:32Z) - Reparameterizing Convolutions for Incremental Multi-Task Learning
without Task Interference [75.95287293847697]
Two common challenges in developing multi-task models are often overlooked in literature.
First, enabling the model to be inherently incremental, continuously incorporating information from new tasks without forgetting the previously learned ones (incremental learning)
Second, eliminating adverse interactions amongst tasks, which has been shown to significantly degrade the single-task performance in a multi-task setup (task interference)
arXiv Detail & Related papers (2020-07-24T14:44:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.