Multi-task Learning for Heterogeneous Data via Integrating Shared and Task-Specific Encodings
- URL: http://arxiv.org/abs/2505.24281v1
- Date: Fri, 30 May 2025 06:58:42 GMT
- Title: Multi-task Learning for Heterogeneous Data via Integrating Shared and Task-Specific Encodings
- Authors: Yang Sui, Qi Xu, Yang Bai, Annie Qu,
- Abstract summary: Multi-task learning (MTL) has become an essential machine learning tool for addressing multiple learning tasks simultaneously.<n>We propose a dual-encoder framework to construct a heterogeneous latent factor space for each task.<n>We introduce a unified algorithm that alternately learns the task-specific and task-shared encoders and coefficients.
- Score: 14.428156175364544
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-task learning (MTL) has become an essential machine learning tool for addressing multiple learning tasks simultaneously and has been effectively applied across fields such as healthcare, marketing, and biomedical research. However, to enable efficient information sharing across tasks, it is crucial to leverage both shared and heterogeneous information. Despite extensive research on MTL, various forms of heterogeneity, including distribution and posterior heterogeneity, present significant challenges. Existing methods often fail to address these forms of heterogeneity within a unified framework. In this paper, we propose a dual-encoder framework to construct a heterogeneous latent factor space for each task, incorporating a task-shared encoder to capture common information across tasks and a task-specific encoder to preserve unique task characteristics. Additionally, we explore the intrinsic similarity structure of the coefficients corresponding to learned latent factors, allowing for adaptive integration across tasks to manage posterior heterogeneity. We introduce a unified algorithm that alternately learns the task-specific and task-shared encoders and coefficients. In theory, we investigate the excess risk bound for the proposed MTL method using local Rademacher complexity and apply it to a new but related task. Through simulation studies, we demonstrate that the proposed method outperforms existing data integration methods across various settings. Furthermore, the proposed method achieves superior predictive performance for time to tumor doubling across five distinct cancer types in PDX data.
Related papers
- Multi-task Learning for Heterogeneous Multi-source Block-Wise Missing Data [14.428156175364544]
Multi-task learning (MTL) has emerged as an imperative machine learning tool to solve multiple learning tasks simultaneously.<n>In order to borrow information across different tasks effectively, it is essential to utilize both homogeneous and heterogeneous information.
arXiv Detail & Related papers (2025-05-30T09:52:03Z) - A Multitask Deep Learning Model for Classification and Regression of Hyperspectral Images: Application to the large-scale dataset [44.94304541427113]
We propose a multitask deep learning model to perform multiple classification and regression tasks simultaneously on hyperspectral images.
We validated our approach on a large hyperspectral dataset called TAIGA.
A comprehensive qualitative and quantitative analysis of the results shows that the proposed method significantly outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-23T11:14:54Z) - Towards Multi-Objective High-Dimensional Feature Selection via
Evolutionary Multitasking [63.91518180604101]
This paper develops a novel EMT framework for high-dimensional feature selection problems, namely MO-FSEMT.
A task-specific knowledge transfer mechanism is designed to leverage the advantage information of each task, enabling the discovery and effective transmission of high-quality solutions.
arXiv Detail & Related papers (2024-01-03T06:34:39Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
arXiv Detail & Related papers (2024-01-02T14:18:11Z) - Variational Multi-Task Learning with Gumbel-Softmax Priors [105.22406384964144]
Multi-task learning aims to explore task relatedness to improve individual tasks.
We propose variational multi-task learning (VMTL), a general probabilistic inference framework for learning multiple related tasks.
arXiv Detail & Related papers (2021-11-09T18:49:45Z) - Semi-supervised Multi-task Learning for Semantics and Depth [88.77716991603252]
Multi-Task Learning (MTL) aims to enhance the model generalization by sharing representations between related tasks for better performance.
We propose the Semi-supervised Multi-Task Learning (MTL) method to leverage the available supervisory signals from different datasets.
We present a domain-aware discriminator structure with various alignment formulations to mitigate the domain discrepancy issue among datasets.
arXiv Detail & Related papers (2021-10-14T07:43:39Z) - Distribution Matching for Heterogeneous Multi-Task Learning: a
Large-scale Face Study [75.42182503265056]
Multi-Task Learning has emerged as a methodology in which multiple tasks are jointly learned by a shared learning algorithm.
We deal with heterogeneous MTL, simultaneously addressing detection, classification & regression problems.
We build FaceBehaviorNet, the first framework for large-scale face analysis, by jointly learning all facial behavior tasks.
arXiv Detail & Related papers (2021-05-08T22:26:52Z) - Multi-task Supervised Learning via Cross-learning [102.64082402388192]
We consider a problem known as multi-task learning, consisting of fitting a set of regression functions intended for solving different tasks.
In our novel formulation, we couple the parameters of these functions, so that they learn in their task specific domains while staying close to each other.
This facilitates cross-fertilization in which data collected across different domains help improving the learning performance at each other task.
arXiv Detail & Related papers (2020-10-24T21:35:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.