A Multi-Dataset Classification-Based Deep Learning Framework for Electronic Health Records and Predictive Analysis in Healthcare
- URL: http://arxiv.org/abs/2409.16721v1
- Date: Wed, 25 Sep 2024 08:13:39 GMT
- Title: A Multi-Dataset Classification-Based Deep Learning Framework for Electronic Health Records and Predictive Analysis in Healthcare
- Authors: Syed Mohd Faisal Malik, Md Tabrez Nafis, Mohd Abdul Ahad, Safdar Tanweer,
- Abstract summary: This study proposes a novel deep learning predictive analysis framework for classifying multiple datasets.
A hybrid deep learning model combining Residual Networks and Artificial Neural Networks is proposed to detect acute and chronic diseases.
Rigorous experimentation and evaluation resulted in high accuracies of 93%, 99%, and 95% for retinal fundus images, cirrhosis stages, and heart disease diagnostic predictions, respectively.
- Score: 0.5999777817331317
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In contemporary healthcare, to protect patient data, electronic health records have become invaluable repositories, creating vast opportunities to leverage deep learning techniques for predictive analysis. Retinal fundus images, cirrhosis stages, and heart disease diagnostic predictions have shown promising results through the integration of deep learning techniques for classifying diverse datasets. This study proposes a novel deep learning predictive analysis framework for classifying multiple datasets by pre-processing data from three distinct sources. A hybrid deep learning model combining Residual Networks and Artificial Neural Networks is proposed to detect acute and chronic diseases such as heart diseases, cirrhosis, and retinal conditions, outperforming existing models. Dataset preparation involves aspects such as categorical data transformation, dimensionality reduction, and missing data synthesis. Feature extraction is effectively performed using scaler transformation for categorical datasets and ResNet architecture for image datasets. The resulting features are integrated into a unified classification model. Rigorous experimentation and evaluation resulted in high accuracies of 93%, 99%, and 95% for retinal fundus images, cirrhosis stages, and heart disease diagnostic predictions, respectively. The efficacy of the proposed method is demonstrated through a detailed analysis of F1-score, precision, and recall metrics. This study offers a comprehensive exploration of methodologies and experiments, providing in-depth knowledge of deep learning predictive analysis in electronic health records.
Related papers
- Local-to-Global Self-Supervised Representation Learning for Diabetic Retinopathy Grading [0.0]
This research aims to present a novel hybrid learning model using self-supervised learning and knowledge distillation.
In our algorithm, for the first time among all self-supervised learning and knowledge distillation models, the test dataset is 50% larger than the training dataset.
Compared to a similar state-of-the-art model, our results achieved higher accuracy and more effective representation spaces.
arXiv Detail & Related papers (2024-10-01T15:19:16Z) - Distributed Federated Learning-Based Deep Learning Model for Privacy MRI Brain Tumor Detection [11.980634373191542]
Distributed training can facilitate the processing of large medical image datasets, and improve the accuracy and efficiency of disease diagnosis.
This paper presents an innovative approach to medical image classification, leveraging Federated Learning (FL) to address the dual challenges of data privacy and efficient disease diagnosis.
arXiv Detail & Related papers (2024-04-15T09:07:19Z) - Deep Learning-Based Brain Image Segmentation for Automated Tumour Detection [0.0]
The objective is to leverage state-of-the-art convolutional neural networks (CNNs) on a large dataset of brain MRI scans for segmentation.
The proposed methodology applies pre-processing techniques for enhanced performance and generalizability.
arXiv Detail & Related papers (2024-04-06T15:09:49Z) - Few-shot learning for COVID-19 Chest X-Ray Classification with
Imbalanced Data: An Inter vs. Intra Domain Study [49.5374512525016]
Medical image datasets are essential for training models used in computer-aided diagnosis, treatment planning, and medical research.
Some challenges are associated with these datasets, including variability in data distribution, data scarcity, and transfer learning issues when using models pre-trained from generic images.
We propose a methodology based on Siamese neural networks in which a series of techniques are integrated to mitigate the effects of data scarcity and distribution imbalance.
arXiv Detail & Related papers (2024-01-18T16:59:27Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - A Comparative Study of Graph Neural Networks for Shape Classification in
Neuroimaging [17.775145204666874]
We present an overview of the current state-of-the-art in geometric deep learning for shape classification in neuroimaging.
We find that using FPFH as node features substantially improves GNN performance and generalisation to out-of-distribution data.
We then confirm these results hold for a clinically relevant task, using the classification of Alzheimer's disease.
arXiv Detail & Related papers (2022-10-29T19:03:01Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
We suggest a semi-supervised methodology for the analysis of large clinical datasets, characterized by mixed data types and missing values.
The methodology is based on application of elastic principal graphs which can address simultaneously the tasks of dimensionality reduction, data visualization, clustering, feature selection and quantifying the geodesic distances (pseudotime) in partially ordered sequences of observations.
arXiv Detail & Related papers (2020-07-07T21:04:55Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare.
Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.
This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.
arXiv Detail & Related papers (2019-12-28T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.