Grading and Anomaly Detection for Automated Retinal Image Analysis using Deep Learning
- URL: http://arxiv.org/abs/2409.16721v2
- Date: Tue, 19 Nov 2024 07:01:03 GMT
- Title: Grading and Anomaly Detection for Automated Retinal Image Analysis using Deep Learning
- Authors: Syed Mohd Faisal Malik, Md Tabrez Nafis, Mohd Abdul Ahad, Safdar Tanweer,
- Abstract summary: The study conducted a systematic literature review using the PRISMA analysis and 62 articles has been investigated in the research.
The diverse deep-learning techniques that are employed for detecting DR lesions are discussed.
- Score: 0.5999777817331317
- License:
- Abstract: The significant portion of diabetic patients was affected due to major blindness caused by Diabetic retinopathy (DR). For diabetic retinopathy, lesion segmentation, and detection the comprehensive examination is delved into the deep learning techniques application. The study conducted a systematic literature review using the PRISMA analysis and 62 articles has been investigated in the research. By including CNN-based models for DR grading, and feature fusion several deep-learning methodologies are explored during the study. For enhancing effectiveness in classification accuracy and robustness the data augmentation and ensemble learning strategies are scrutinized. By demonstrating the superior performance compared to individual models the efficacy of ensemble learning methods is investigated. The potential ensemble approaches in DR diagnosis are shown by the integration of multiple pre-trained networks with custom classifiers that yield high specificity. The diverse deep-learning techniques that are employed for detecting DR lesions are discussed within the diabetic retinopathy lesions segmentation and detection section. By emphasizing the requirement for continued research and integration into clinical practice deep learning shows promise for personalized healthcare and early detection of diabetics.
Related papers
- TopOC: Topological Deep Learning for Ovarian and Breast Cancer Diagnosis [3.262230127283452]
Topological data analysis offers a unique approach by extracting essential information through the evaluation of topological patterns across different color channels.
We show that the inclusion of topological features significantly improves the differentiation of tumor types in ovarian and breast cancers.
arXiv Detail & Related papers (2024-10-13T12:24:13Z) - Enhancing Eye Disease Diagnosis with Deep Learning and Synthetic Data Augmentation [0.0]
In this paper, an ensemble learning technique is proposed for early detection and management of diabetic retinopathy.
The proposed model is tested on the APTOS dataset and it is showing supremacy on the validation accuracy ($99%)$ in comparison to the previous models.
arXiv Detail & Related papers (2024-07-25T04:09:17Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Detection and Classification of Diabetic Retinopathy using Deep Learning
Algorithms for Segmentation to Facilitate Referral Recommendation for Test
and Treatment Prediction [0.0]
This research paper addresses the critical challenge of diabetic retinopathy (DR), a severe complication of diabetes leading to potential blindness.
The proposed methodology leverages transfer learning with convolutional neural networks (CNNs) for automatic DR detection using a single fundus photograph.
High evaluation scores in Jaccard, F1, recall, precision, and accuracy underscore the model's potential for enhancing diagnostic capabilities in retinal pathology assessment.
arXiv Detail & Related papers (2024-01-05T11:19:24Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical
Coherence Tomography Angiography Images [51.27125547308154]
We organized a challenge named "DRAC - Diabetic Retinopathy Analysis Challenge" in conjunction with the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022)
The challenge consists of three tasks: segmentation of DR lesions, image quality assessment and DR grading.
This paper presents a summary and analysis of the top-performing solutions and results for each task of the challenge.
arXiv Detail & Related papers (2023-04-05T12:04:55Z) - Bag of Tricks for Developing Diabetic Retinopathy Analysis Framework to
Overcome Data Scarcity [6.802798389355481]
We present a study for diabetic retinopathy (DR) analysis tasks, including lesion segmentation, image quality assessment, and DR grading.
For each task, we introduce a robust training scheme by leveraging ensemble learning, data augmentation, and semi-supervised learning.
We propose reliable pseudo labeling that excludes uncertain pseudo-labels based on the model's confidence scores to reduce the negative effect of noisy pseudo-labels.
arXiv Detail & Related papers (2022-10-18T03:25:00Z) - Transfer Learning for Retinal Vascular Disease Detection: A Pilot Study
with Diabetic Retinopathy and Retinopathy of Prematurity [10.447939250507654]
We propose a transfer learning technique that aims to utilize the feature similarities for detecting retinal vascular diseases.
Our experimental results demonstrate that our DR-pretrained approach dominates in all metrics the conventional ImageNet-pretrained transfer learning approach.
arXiv Detail & Related papers (2022-01-04T17:14:42Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
We compare the impact of different training procedures for diabetic retinopathy grading.
We investigate different aspects such as quantitative performance, statistics of the learned feature representations, interpretability and robustness to image distortions.
Our results indicate that models from ImageNet pretraining report a significant increase in performance, generalization and robustness to image distortions.
arXiv Detail & Related papers (2021-06-25T08:32:45Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
People with diabetes are at risk of developing diabetic retinopathy (DR)
Computer-aided DR diagnosis is a promising tool for early detection of DR and severity grading.
This dataset has 1,842 images with pixel-level DR-related lesion annotations, and 1,000 images with image-level labels graded by six board-certified ophthalmologists.
arXiv Detail & Related papers (2020-08-22T07:48:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.