Super Level Sets and Exponential Decay: A Synergistic Approach to Stable Neural Network Training
- URL: http://arxiv.org/abs/2409.16769v1
- Date: Wed, 25 Sep 2024 09:27:17 GMT
- Title: Super Level Sets and Exponential Decay: A Synergistic Approach to Stable Neural Network Training
- Authors: Jatin Chaudhary, Dipak Nidhi, Jukka Heikkonen, Haari Merisaari, Rajiv Kanth,
- Abstract summary: We develop a dynamic learning rate algorithm that integrates exponential decay and advanced anti-overfitting strategies.
We prove that the superlevel sets of the loss function, as influenced by our adaptive learning rate, are always connected.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The objective of this paper is to enhance the optimization process for neural networks by developing a dynamic learning rate algorithm that effectively integrates exponential decay and advanced anti-overfitting strategies. Our primary contribution is the establishment of a theoretical framework where we demonstrate that the optimization landscape, under the influence of our algorithm, exhibits unique stability characteristics defined by Lyapunov stability principles. Specifically, we prove that the superlevel sets of the loss function, as influenced by our adaptive learning rate, are always connected, ensuring consistent training dynamics. Furthermore, we establish the "equiconnectedness" property of these superlevel sets, which maintains uniform stability across varying training conditions and epochs. This paper contributes to the theoretical understanding of dynamic learning rate mechanisms in neural networks and also pave the way for the development of more efficient and reliable neural optimization techniques. This study intends to formalize and validate the equiconnectedness of loss function as superlevel sets in the context of neural network training, opening newer avenues for future research in adaptive machine learning algorithms. We leverage previous theoretical discoveries to propose training mechanisms that can effectively handle complex and high-dimensional data landscapes, particularly in applications requiring high precision and reliability.
Related papers
- Hallmarks of Optimization Trajectories in Neural Networks: Directional Exploration and Redundancy [75.15685966213832]
We analyze the rich directional structure of optimization trajectories represented by their pointwise parameters.
We show that training only scalar batchnorm parameters some while into training matches the performance of training the entire network.
arXiv Detail & Related papers (2024-03-12T07:32:47Z) - Meta-Learning Strategies through Value Maximization in Neural Networks [7.285835869818669]
We present a learning effort framework capable of efficiently optimizing control signals on a fully normative objective.
We apply this framework to investigate the effect of approximations in common meta-learning algorithms.
Across settings, we find that control effort is most beneficial when applied to easier aspects of a task early in learning.
arXiv Detail & Related papers (2023-10-30T18:29:26Z) - Accelerated Training via Incrementally Growing Neural Networks using
Variance Transfer and Learning Rate Adaptation [34.7523496790944]
We develop an approach to efficiently grow neural networks, within which parameterization and optimization strategies are designed by considering the training dynamics.
We show that our method achieves comparable or better accuracy than training large fixed-size models, while saving a substantial portion of the original budget for training.
arXiv Detail & Related papers (2023-06-22T07:06:45Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling.
We show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics.
arXiv Detail & Related papers (2023-02-11T21:07:30Z) - An Adaptive and Stability-Promoting Layerwise Training Approach for Sparse Deep Neural Network Architecture [0.0]
This work presents a two-stage adaptive framework for developing deep neural network (DNN) architectures that generalize well for a given training data set.
In the first stage, a layerwise training approach is adopted where a new layer is added each time and trained independently by freezing parameters in the previous layers.
We introduce a epsilon-delta stability-promoting concept as a desirable property for a learning algorithm and show that employing manifold regularization yields a epsilon-delta stability-promoting algorithm.
arXiv Detail & Related papers (2022-11-13T09:51:16Z) - Annealing Optimization for Progressive Learning with Stochastic
Approximation [0.0]
We introduce a learning model designed to meet the needs of applications in which computational resources are limited.
We develop an online prototype-based learning algorithm that is formulated as an online-free gradient approximation algorithm.
The learning model can be viewed as an interpretable and progressively growing competitive neural network model to be used for supervised, unsupervised, and reinforcement learning.
arXiv Detail & Related papers (2022-09-06T21:31:01Z) - Edge of chaos as a guiding principle for modern neural network training [19.419382003562976]
We study the role of various hyperparameters in modern neural network training algorithms in terms of the order-chaos phase diagram.
In particular, we study a fully analytical feedforward neural network trained on the widely adopted Fashion-MNIST dataset.
arXiv Detail & Related papers (2021-07-20T12:17:55Z) - Gradient Starvation: A Learning Proclivity in Neural Networks [97.02382916372594]
Gradient Starvation arises when cross-entropy loss is minimized by capturing only a subset of features relevant for the task.
This work provides a theoretical explanation for the emergence of such feature imbalance in neural networks.
arXiv Detail & Related papers (2020-11-18T18:52:08Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z) - Understanding the Effects of Data Parallelism and Sparsity on Neural
Network Training [126.49572353148262]
We study two factors in neural network training: data parallelism and sparsity.
Despite their promising benefits, understanding of their effects on neural network training remains elusive.
arXiv Detail & Related papers (2020-03-25T10:49:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.