Conformal Symplectic Optimization for Stable Reinforcement Learning
- URL: http://arxiv.org/abs/2412.02291v2
- Date: Sun, 08 Dec 2024 07:07:57 GMT
- Title: Conformal Symplectic Optimization for Stable Reinforcement Learning
- Authors: Yao Lyu, Xiangteng Zhang, Shengbo Eben Li, Jingliang Duan, Letian Tao, Qing Xu, Lei He, Keqiang Li,
- Abstract summary: By utilizing relativistic kinetic energy, RAD incorporates from special relativity and limits parameter updates below a finite speed, effectively mitigating abnormal influences.
Notably, RAD achieves up to a 155.1% performance improvement, showcasing its efficacy in training Atari games.
- Score: 21.491621524500736
- License:
- Abstract: Training deep reinforcement learning (RL) agents necessitates overcoming the highly unstable nonconvex stochastic optimization inherent in the trial-and-error mechanism. To tackle this challenge, we propose a physics-inspired optimization algorithm called relativistic adaptive gradient descent (RAD), which enhances long-term training stability. By conceptualizing neural network (NN) training as the evolution of a conformal Hamiltonian system, we present a universal framework for transferring long-term stability from conformal symplectic integrators to iterative NN updating rules, where the choice of kinetic energy governs the dynamical properties of resulting optimization algorithms. By utilizing relativistic kinetic energy, RAD incorporates principles from special relativity and limits parameter updates below a finite speed, effectively mitigating abnormal gradient influences. Additionally, RAD models NN optimization as the evolution of a multi-particle system where each trainable parameter acts as an independent particle with an individual adaptive learning rate. We prove RAD's sublinear convergence under general nonconvex settings, where smaller gradient variance and larger batch sizes contribute to tighter convergence. Notably, RAD degrades to the well-known adaptive moment estimation (ADAM) algorithm when its speed coefficient is chosen as one and symplectic factor as a small positive value. Experimental results show RAD outperforming nine baseline optimizers with five RL algorithms across twelve environments, including standard benchmarks and challenging scenarios. Notably, RAD achieves up to a 155.1% performance improvement over ADAM in Atari games, showcasing its efficacy in stabilizing and accelerating RL training.
Related papers
- Dynamic Estimation of Learning Rates Using a Non-Linear Autoregressive Model [0.0]
We introduce a new class of adaptive nonlinear autoregressive (Nlar) models incorporating the concept of momentum.
Within this framework, we propose three distinct estimators for learning rates and provide theoretical proof of their convergence.
arXiv Detail & Related papers (2024-10-13T17:55:58Z) - Super Level Sets and Exponential Decay: A Synergistic Approach to Stable Neural Network Training [0.0]
We develop a dynamic learning rate algorithm that integrates exponential decay and advanced anti-overfitting strategies.
We prove that the superlevel sets of the loss function, as influenced by our adaptive learning rate, are always connected.
arXiv Detail & Related papers (2024-09-25T09:27:17Z) - Hallmarks of Optimization Trajectories in Neural Networks: Directional Exploration and Redundancy [75.15685966213832]
We analyze the rich directional structure of optimization trajectories represented by their pointwise parameters.
We show that training only scalar batchnorm parameters some while into training matches the performance of training the entire network.
arXiv Detail & Related papers (2024-03-12T07:32:47Z) - Adaptive Federated Learning Over the Air [108.62635460744109]
We propose a federated version of adaptive gradient methods, particularly AdaGrad and Adam, within the framework of over-the-air model training.
Our analysis shows that the AdaGrad-based training algorithm converges to a stationary point at the rate of $mathcalO( ln(T) / T 1 - frac1alpha ).
arXiv Detail & Related papers (2024-03-11T09:10:37Z) - An Automatic Learning Rate Schedule Algorithm for Achieving Faster
Convergence and Steeper Descent [10.061799286306163]
We investigate the convergence behavior of the delta-bar-delta algorithm in real-world neural network optimization.
To address any potential convergence challenges, we propose a novel approach called RDBD (Regrettable Delta-Bar-Delta)
Our approach allows for prompt correction of biased learning rate adjustments and ensures the convergence of the optimization process.
arXiv Detail & Related papers (2023-10-17T14:15:57Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Learning to Accelerate Partial Differential Equations via Latent Global
Evolution [64.72624347511498]
Latent Evolution of PDEs (LE-PDE) is a simple, fast and scalable method to accelerate the simulation and inverse optimization of PDEs.
We introduce new learning objectives to effectively learn such latent dynamics to ensure long-term stability.
We demonstrate up to 128x reduction in the dimensions to update, and up to 15x improvement in speed, while achieving competitive accuracy.
arXiv Detail & Related papers (2022-06-15T17:31:24Z) - An Adaptive Gradient Method with Energy and Momentum [0.0]
We introduce a novel algorithm for gradient-based optimization of objective functions.
The method is simple to implement, computationally efficient, and well suited for large-scale machine learning problems.
arXiv Detail & Related papers (2022-03-23T04:48:38Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - Adaptive Gradient Method with Resilience and Momentum [120.83046824742455]
We propose an Adaptive Gradient Method with Resilience and Momentum (AdaRem)
AdaRem adjusts the parameter-wise learning rate according to whether the direction of one parameter changes in the past is aligned with the direction of the current gradient.
Our method outperforms previous adaptive learning rate-based algorithms in terms of the training speed and the test error.
arXiv Detail & Related papers (2020-10-21T14:49:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.