論文の概要: LLaMa-SciQ: An Educational Chatbot for Answering Science MCQ
- arxiv url: http://arxiv.org/abs/2409.16779v1
- Date: Wed, 25 Sep 2024 09:41:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-27 04:40:43.959882
- Title: LLaMa-SciQ: An Educational Chatbot for Answering Science MCQ
- Title(参考訳): LLaMa-SciQ:科学MCQへの回答のための教育チャットボット
- Authors: Marc-Antoine Allard, Matin Ansaripour, Maria Yuffa, Paul Teiletche,
- Abstract要約: 大規模言語モデル(LLM)は、数学的な推論を必要とするタスク、特に多重選択質問(MCQ)にしばしば苦労する。
我々は,STEM分野におけるMCQの解決と理解を支援するLLaMa-SciQを開発した。
数学的推論では、LLaMa-SciQはGSM8kデータセットで74.5%、MATHデータセットで30%の精度を達成した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) often struggle with tasks requiring mathematical reasoning, particularly multiple-choice questions (MCQs). To address this issue, we developed LLaMa-SciQ, an educational chatbot designed to assist college students in solving and understanding MCQs in STEM fields. We begin by fine-tuning and aligning the models to human preferences. After comparing the performance of Mistral-7B and LLaMa-8B, we selected the latter as the base model due to its higher evaluation accuracy. To further enhance accuracy, we implement Retrieval-Augmented Generation (RAG) and apply quantization to compress the model, reducing inference time and increasing accessibility for students. For mathematical reasoning, LLaMa-SciQ achieved 74.5% accuracy on the GSM8k dataset and 30% on the MATH dataset. However, RAG does not improve performance and even reduces it, likely due to retriever issues or the model's unfamiliarity with context. Despite this, the quantized model shows only a 5% loss in performance, demonstrating significant efficiency improvements.
- Abstract(参考訳): 大規模言語モデル (LLMs) は、数学的な推論を必要とするタスク、特に多重選択問題 (MCQs) に悩まされることが多い。
LLaMa-SciQは,大学生のSTEM分野におけるMCQの解決と理解を支援するためのチャットボットである。
まず、モデルを人間の好みに合わせて微調整し調整することから始めます。
Mistral-7BとLLaMa-8Bの性能を比較した結果,評価精度が高いため,後者をベースモデルとして選択した。
精度をさらに高めるため、我々はRetrieval-Augmented Generation (RAG)を実装し、量子化を適用してモデルを圧縮し、推論時間を短縮し、学生のアクセシビリティを高める。
数学的推論のために、LLaMa-SciQはGSM8kデータセットで74.5%、MATHデータセットで30%の精度を達成した。
しかしながら、RAGはパフォーマンスを改善しておらず、レトリバーの問題や、コンテキストに精通していないモデルのため、それを減らすことさえできない。
それにもかかわらず、量子化モデルでは性能が5%の低下しか示さず、大幅な効率改善が示される。
関連論文リスト
- MATH-Perturb: Benchmarking LLMs' Math Reasoning Abilities against Hard Perturbations [90.07275414500154]
各種モデルにおけるMATH-P-Hardの性能低下を観察する。
また、学習した問題解決スキルを盲目的に適用する新しい形態の記憶に関する懸念も提起する。
論文 参考訳(メタデータ) (2025-02-10T13:31:46Z) - SuperCorrect: Supervising and Correcting Language Models with Error-Driven Insights [89.56181323849512]
より小規模な学生モデルの推論と反映の両方を教師モデルを用いて監督し,修正するフレームワークであるSuperCorrectを提案する。
第1段階では、教師モデルから階層的な高レベルかつ詳細な思考テンプレートを抽出し、よりきめ細かい推論思考を導き出す学生モデルを指導する。
第2段階では、学生モデルの自己補正能力を高めるために、クロスモデル協調直接選好最適化(DPO)を導入する。
論文 参考訳(メタデータ) (2024-10-11T17:25:52Z) - Skywork-Math: Data Scaling Laws for Mathematical Reasoning in Large Language Models -- The Story Goes On [55.449818944278526]
一般的な7B言語モデル上での教師付き微調整(SFT)であるSkywork-Mathモデルシリーズを紹介する。
Skywork-Math 7Bは競争レベルのMATHベンチマークで51.2%の精度を達成した。
我々は,LLMの数学推論能力を高めるために,研究用と産業用の両方で,いくつかの実践的なテイクアウトを提供する。
論文 参考訳(メタデータ) (2024-07-11T09:56:51Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStarは、大言語モデルの純粋に推論に基づく探索手法である。
推論タスクを探索問題として定式化し、最適な推論経路を特定するための2つの探索アイデアを提案する。
Llama-2-13BやMistral-7Bのようなオープンソースモデルの推論能力を大幅に向上させ、GPT-3.5やGrok-1に匹敵する性能を実現している。
論文 参考訳(メタデータ) (2024-05-25T15:07:33Z) - Common 7B Language Models Already Possess Strong Math Capabilities [61.61442513067561]
本稿では,LLaMA-2 7Bモデルと事前学習を併用したモデルが,すでに強力な数学的能力を示していることを示す。
拡張スケーリングの可能性は、公開されている数学の質問の不足によって制限されている。
論文 参考訳(メタデータ) (2024-03-07T18:00:40Z) - MathGenie: Generating Synthetic Data with Question Back-translation for Enhancing Mathematical Reasoning of LLMs [38.127313175508746]
MathGenieは、小規模の問題解決データセットから多様で信頼性の高い数学問題を生成する新しい方法である。
7Bから70Bまでの各種事前学習モデルについて, 提案手法の有効性を検証するために, 新たなキュレートデータを用いて訓練を行った。
MathGenieLM-InternLM2はGSM8Kで87.7%、MATHで55.7%の精度を達成し、オープンソース言語モデルで最高のスコアを確保している。
論文 参考訳(メタデータ) (2024-02-26T07:17:25Z) - Augmenting Math Word Problems via Iterative Question Composing [7.493665644128088]
本稿では,処理されたWebデータと合成質問応答ペアを組み合わせたMMIQCデータセットを提案する。
Qwen-72B-MMIQC は45.0%の精度を達成し、2023年にリリースされた最初のバージョン GPT-4 を8.2%上回った。
論文 参考訳(メタデータ) (2024-01-17T06:48:16Z) - Scaling Relationship on Learning Mathematical Reasoning with Large
Language Models [75.29595679428105]
本研究では,事前学習損失,教師付きデータ量,拡張データ量が教師付きLDMの推論性能に与える影響について検討する。
複数のモデルからの拒絶サンプルは、LLaMA-7BをGSM8Kの49.3%の精度に押し上げ、監督された微調整(SFT)の精度を35.9%上回る結果となった。
論文 参考訳(メタデータ) (2023-08-03T15:34:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。