LLaMa-SciQ: An Educational Chatbot for Answering Science MCQ
- URL: http://arxiv.org/abs/2409.16779v1
- Date: Wed, 25 Sep 2024 09:41:46 GMT
- Title: LLaMa-SciQ: An Educational Chatbot for Answering Science MCQ
- Authors: Marc-Antoine Allard, Matin Ansaripour, Maria Yuffa, Paul Teiletche,
- Abstract summary: Large Language Models (LLMs) often struggle with tasks requiring mathematical reasoning, particularly multiple-choice questions (MCQs)
We developed LLaMa-SciQ to assist college students in solving and understanding MCQs in STEM fields.
For mathematical reasoning, LLaMa-SciQ achieved 74.5% accuracy on the GSM8k dataset and 30% on the MATH dataset.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) often struggle with tasks requiring mathematical reasoning, particularly multiple-choice questions (MCQs). To address this issue, we developed LLaMa-SciQ, an educational chatbot designed to assist college students in solving and understanding MCQs in STEM fields. We begin by fine-tuning and aligning the models to human preferences. After comparing the performance of Mistral-7B and LLaMa-8B, we selected the latter as the base model due to its higher evaluation accuracy. To further enhance accuracy, we implement Retrieval-Augmented Generation (RAG) and apply quantization to compress the model, reducing inference time and increasing accessibility for students. For mathematical reasoning, LLaMa-SciQ achieved 74.5% accuracy on the GSM8k dataset and 30% on the MATH dataset. However, RAG does not improve performance and even reduces it, likely due to retriever issues or the model's unfamiliarity with context. Despite this, the quantized model shows only a 5% loss in performance, demonstrating significant efficiency improvements.
Related papers
- SuperCorrect: Supervising and Correcting Language Models with Error-Driven Insights [89.56181323849512]
We propose SuperCorrect, a framework that uses a large teacher model to supervise and correct both the reasoning and reflection processes of a smaller student model.
In the first stage, we extract hierarchical high-level and detailed thought templates from the teacher model to guide the student model in eliciting more fine-grained reasoning thoughts.
In the second stage, we introduce cross-model collaborative direct preference optimization (DPO) to enhance the self-correction abilities of the student model.
arXiv Detail & Related papers (2024-10-11T17:25:52Z) - Skywork-Math: Data Scaling Laws for Mathematical Reasoning in Large Language Models -- The Story Goes On [55.449818944278526]
We introduce the Skywork-Math model series, supervised fine-tuned (SFT) on common 7B language models.
Skywork-Math 7B has achieved impressive accuracies of 51.2% on the competition-level MATH benchmark.
We provide several practical takeaways to enhance math reasoning abilities in LLMs for both research and industry applications.
arXiv Detail & Related papers (2024-07-11T09:56:51Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStar is a purely inference-based searching method for large language models.
It formulates reasoning tasks as searching problems and proposes two search ideas to identify the optimal reasoning paths.
It significantly enhances the reasoning abilities of open-source models, such as Llama-2-13B and Mistral-7B, and achieves comparable performance to GPT-3.5 and Grok-1.
arXiv Detail & Related papers (2024-05-25T15:07:33Z) - Evaluating Mathematical Reasoning Beyond Accuracy [50.09931172314218]
We introduce ReasonEval, a new methodology for evaluating the quality of reasoning steps.
We show that ReasonEval achieves state-of-the-art performance on human-labeled datasets.
We observe that ReasonEval can play a significant role in data selection.
arXiv Detail & Related papers (2024-04-08T17:18:04Z) - Common 7B Language Models Already Possess Strong Math Capabilities [61.61442513067561]
This paper shows that the LLaMA-2 7B model with common pre-training already exhibits strong mathematical abilities.
The potential for extensive scaling is constrained by the scarcity of publicly available math questions.
arXiv Detail & Related papers (2024-03-07T18:00:40Z) - MathGenie: Generating Synthetic Data with Question Back-translation for Enhancing Mathematical Reasoning of LLMs [38.127313175508746]
MathGenie is a novel method for generating diverse and reliable math problems from a small-scale problem-solution dataset.
Various pretrained models, ranging from 7B to 70B, are trained on the newly curated data to test the effectiveness of the proposed augmentation technique.
MathGenieLM-InternLM2 achieves an accuracy of 87.7% on GSM8K and 55.7% on MATH, securing the best overall score among open-source language models.
arXiv Detail & Related papers (2024-02-26T07:17:25Z) - Augmenting Math Word Problems via Iterative Question Composing [8.186291374940595]
We introduce the MMIQC dataset, comprising a mixture of processed web data and synthetic question-response pairs.
Qwen-72B-MMIQC achieves a 45.0% accuracy, exceeding the previous open-source state-of-the-art by 8.2%.
arXiv Detail & Related papers (2024-01-17T06:48:16Z) - Scaling Relationship on Learning Mathematical Reasoning with Large
Language Models [75.29595679428105]
We investigate how the pre-training loss, supervised data amount, and augmented data amount influence the reasoning performances of a supervised LLM.
We find that rejection samples from multiple models push LLaMA-7B to an accuracy of 49.3% on GSM8K which outperforms the supervised fine-tuning (SFT) accuracy of 35.9% significantly.
arXiv Detail & Related papers (2023-08-03T15:34:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.