SuperCorrect: Supervising and Correcting Language Models with Error-Driven Insights
- URL: http://arxiv.org/abs/2410.09008v1
- Date: Fri, 11 Oct 2024 17:25:52 GMT
- Title: SuperCorrect: Supervising and Correcting Language Models with Error-Driven Insights
- Authors: Ling Yang, Zhaochen Yu, Tianjun Zhang, Minkai Xu, Joseph E. Gonzalez, Bin Cui, Shuicheng Yan,
- Abstract summary: We propose SuperCorrect, a framework that uses a large teacher model to supervise and correct both the reasoning and reflection processes of a smaller student model.
In the first stage, we extract hierarchical high-level and detailed thought templates from the teacher model to guide the student model in eliciting more fine-grained reasoning thoughts.
In the second stage, we introduce cross-model collaborative direct preference optimization (DPO) to enhance the self-correction abilities of the student model.
- Score: 89.56181323849512
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) like GPT-4, PaLM, and LLaMA have shown significant improvements in various reasoning tasks. However, smaller models such as Llama-3-8B and DeepSeekMath-Base still struggle with complex mathematical reasoning because they fail to effectively identify and correct reasoning errors. Recent reflection-based methods aim to address these issues by enabling self-reflection and self-correction, but they still face challenges in independently detecting errors in their reasoning steps. To overcome these limitations, we propose SuperCorrect, a novel two-stage framework that uses a large teacher model to supervise and correct both the reasoning and reflection processes of a smaller student model. In the first stage, we extract hierarchical high-level and detailed thought templates from the teacher model to guide the student model in eliciting more fine-grained reasoning thoughts. In the second stage, we introduce cross-model collaborative direct preference optimization (DPO) to enhance the self-correction abilities of the student model by following the teacher's correction traces during training. This cross-model DPO approach teaches the student model to effectively locate and resolve erroneous thoughts with error-driven insights from the teacher model, breaking the bottleneck of its thoughts and acquiring new skills and knowledge to tackle challenging problems. Extensive experiments consistently demonstrate our superiority over previous methods. Notably, our SuperCorrect-7B model significantly surpasses powerful DeepSeekMath-7B by 7.8%/5.3% and Qwen2.5-Math-7B by 15.1%/6.3% on MATH/GSM8K benchmarks, achieving new SOTA performance among all 7B models. Code: https://github.com/YangLing0818/SuperCorrect-llm
Related papers
- Enhancing LLM Reasoning via Critique Models with Test-Time and Training-Time Supervision [120.40788744292739]
We propose a two-player paradigm that separates the roles of reasoning and critique models.
We first propose AutoMathCritique, an automated and scalable framework for collecting critique data.
We demonstrate that the critique models consistently improve the actor's performance on difficult queries at test-time.
arXiv Detail & Related papers (2024-11-25T17:11:54Z) - Subtle Errors Matter: Preference Learning via Error-injected Self-editing [59.405145971637204]
We propose a novel preference learning framework called eRror-Injected Self-Editing (RISE)
RISE injects predefined subtle errors into partial tokens of correct solutions to construct hard pairs for error mitigation.
Experiments validate the effectiveness of RISE, with preference learning on Qwen2-7B-Instruct yielding notable improvements of 3.0% on GSM8K and 7.9% on MATH.
arXiv Detail & Related papers (2024-10-09T07:43:38Z) - LLaMa-SciQ: An Educational Chatbot for Answering Science MCQ [0.0]
Large Language Models (LLMs) often struggle with tasks requiring mathematical reasoning, particularly multiple-choice questions (MCQs)
We developed LLaMa-SciQ to assist college students in solving and understanding MCQs in STEM fields.
For mathematical reasoning, LLaMa-SciQ achieved 74.5% accuracy on the GSM8k dataset and 30% on the MATH dataset.
arXiv Detail & Related papers (2024-09-25T09:41:46Z) - Stepwise Verification and Remediation of Student Reasoning Errors with Large Language Model Tutors [78.53699244846285]
Large language models (LLMs) present an opportunity to scale high-quality personalized education to all.
LLMs struggle to precisely detect student's errors and tailor their feedback to these errors.
Inspired by real-world teaching practice where teachers identify student errors and customize their response based on them, we focus on verifying student solutions.
arXiv Detail & Related papers (2024-07-12T10:11:40Z) - LLMs-as-Instructors: Learning from Errors Toward Automating Model Improvement [93.38736019287224]
"LLMs-as-Instructors" framework autonomously enhances the training of smaller target models.
Inspired by the theory of "Learning from Errors", this framework employs an instructor LLM to meticulously analyze the specific errors within a target model.
Within this framework, we implement two strategies: "Learning from Error," which focuses solely on incorrect responses to tailor training data, and "Learning from Error by Contrast", which uses contrastive learning to analyze both correct and incorrect responses for a deeper understanding of errors.
arXiv Detail & Related papers (2024-06-29T17:16:04Z) - First-Step Advantage: Importance of Starting Right in Multi-Step Math Reasoning [11.75364271481855]
Language models can solve complex reasoning tasks better by learning to generate rationales for their predictions.
We observe that smaller models in particular when corrected, can solve a task that they would have otherwise struggled with.
We propose QuestCoT, where a smaller model first asks itself how to start, before proceeding with a chain of reasoning.
arXiv Detail & Related papers (2023-11-14T06:45:31Z) - Teaching Language Models to Self-Improve through Interactive Demonstrations [83.9421355808174]
Self-improving ability of large language models has been shown to be absent and difficult to learn for smaller models.
We introduce TriPosT, a training algorithm that endows smaller models with such self-improvement ability.
We show that our approach can improve a LLaMA-7b's performance on math and reasoning tasks by up to 7.13%.
arXiv Detail & Related papers (2023-10-20T14:11:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.