論文の概要: Spacewalker: Traversing Representation Spaces for Fast Interactive Exploration and Annotation of Unstructured Data
- arxiv url: http://arxiv.org/abs/2409.16793v1
- Date: Wed, 25 Sep 2024 10:14:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-27 04:30:14.878513
- Title: Spacewalker: Traversing Representation Spaces for Fast Interactive Exploration and Annotation of Unstructured Data
- Title(参考訳): Spacewalker: 高速なインタラクティブな探索と非構造化データのアノテーションのための表現空間のトラバース
- Authors: Lukas Heine, Fabian Hörst, Jana Fragemann, Gijs Luijten, Miriam Balzer, Jan Egger, Fin Bahnsen, M. Saquib Sarfraz, Jens Kleesiek, Constantin Seibold,
- Abstract要約: Spacewalkerは、複数のモダリティをまたいだデータの探索とアノテートのために設計されたインタラクティブなツールである。
Spacewalkerは、ユーザーがデータ表現を抽出し、低次元空間でそれらを視覚化することを可能にする。
その結果,潜伏空間を横断し,マルチモーダルクエリを実行するツールの能力は,利用者の関連データを素早く識別する能力を大幅に向上させることがわかった。
- 参考スコア(独自算出の注目度): 8.154222337476549
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unstructured data in industries such as healthcare, finance, and manufacturing presents significant challenges for efficient analysis and decision making. Detecting patterns within this data and understanding their impact is critical but complex without the right tools. Traditionally, these tasks relied on the expertise of data analysts or labor-intensive manual reviews. In response, we introduce Spacewalker, an interactive tool designed to explore and annotate data across multiple modalities. Spacewalker allows users to extract data representations and visualize them in low-dimensional spaces, enabling the detection of semantic similarities. Through extensive user studies, we assess Spacewalker's effectiveness in data annotation and integrity verification. Results show that the tool's ability to traverse latent spaces and perform multi-modal queries significantly enhances the user's capacity to quickly identify relevant data. Moreover, Spacewalker allows for annotation speed-ups far superior to conventional methods, making it a promising tool for efficiently navigating unstructured data and improving decision making processes. The code of this work is open-source and can be found at: https://github.com/code-lukas/Spacewalker
- Abstract(参考訳): 医療、金融、製造業などの産業における非構造化データは、効率的な分析と意思決定に重大な課題をもたらす。
データ内のパターンを検出し、その影響を理解することは重要だが、適切なツールなしでは複雑だ。
伝統的に、これらのタスクはデータアナリストや労働集約的なマニュアルレビューの専門知識に依存していた。
これに対して,複数のモダリティをまたいだデータの探索とアノテートを目的としたインタラクティブツールであるSpacewalkerを紹介した。
Spacewalkerは、ユーザがデータ表現を抽出し、低次元空間でそれらを視覚化することで、セマンティックな類似性の検出を可能にする。
広範なユーザ研究を通じて、データアノテーションと整合性検証におけるSpacewalkerの有効性を評価する。
その結果,潜伏空間を横断し,マルチモーダルクエリを実行するツールの能力は,利用者の関連データを素早く識別する能力を大幅に向上させることがわかった。
さらに、Spacewalkerは従来の手法よりもはるかに優れたアノテーションのスピードアップを可能にし、非構造化データを効率的にナビゲートし、意思決定プロセスを改善するための有望なツールである。
この作業のコードはオープンソースで、https://github.com/code-lukas/Spacewalkerを参照してください。
関連論文リスト
- WildVis: Open Source Visualizer for Million-Scale Chat Logs in the Wild [88.05964311416717]
本研究では,高速,多目的,大規模会話分析が可能な対話型ツールWildVisを紹介する。
WildVisは、基準リストに基づいてテキストと埋め込みスペースの検索と視覚化機能を提供する。
誤用調査の促進,データセット間のトピック分布の可視化と比較,ユーザ固有の会話パターンの特徴付け,という3つのケーススタディを通じてWildVisの有用性を実証する。
論文 参考訳(メタデータ) (2024-09-05T17:59:15Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
大規模言語モデル(LLM)エージェントは、精度と幻覚を高めるために外部ツールと知識を活用する際、印象的な能力を示した。
本稿では、LLMエージェントを最適化して提供されたツールを効果的に活用し、与えられたタスクのパフォーマンスを向上させる新しい自動化フレームワークであるAvaTaRを紹介する。
論文 参考訳(メタデータ) (2024-06-17T04:20:02Z) - VERA: Generating Visual Explanations of Two-Dimensional Embeddings via Region Annotation [0.0]
Visual Explanations via Region (VERA) は2次元埋め込みの視覚的説明を生成する自動埋め込みアノテーション手法である。
VERAは、埋め込み空間内の異なる領域を特徴付ける情報的説明を生成し、ユーザがその埋め込み風景を一目で概観することができる。
実世界のデータセット上でのVERAの利用について説明するとともに,本手法の有効性を比較ユーザスタディで検証する。
論文 参考訳(メタデータ) (2024-06-07T10:23:03Z) - SwitchTab: Switched Autoencoders Are Effective Tabular Learners [16.316153704284936]
グラフデータに対する自己教師付き表現手法であるSwitchTabを紹介する。
SwitchTabは、データペア間の相互および正常な機能を分離することで、潜伏した依存関係をキャプチャする。
その結果、微調整によるエンドツーエンド予測タスクにおいて、優れた性能を示した。
そこで我々は,SwitchTabが相互に疎結合で有意な特徴を可視化することで,説明可能な表現を生成する能力を強調した。
論文 参考訳(メタデータ) (2024-01-04T01:05:45Z) - Capture the Flag: Uncovering Data Insights with Large Language Models [90.47038584812925]
本研究では,Large Language Models (LLMs) を用いてデータの洞察の発見を自動化する可能性について検討する。
そこで本稿では,データセット内の意味的かつ関連する情報(フラグ)を識別する能力を測定するために,フラグを捕捉する原理に基づく新しい評価手法を提案する。
論文 参考訳(メタデータ) (2023-12-21T14:20:06Z) - Learn to Explore: on Bootstrapping Interactive Data Exploration with
Meta-learning [8.92180350317399]
本稿ではメタ学習に基づく学習から発見までのフレームワークを提案し,メタタスクを自動生成した分類器の学習方法を学習する。
提案手法は,精度と効率の点で既存探索法よりも優れている。
論文 参考訳(メタデータ) (2022-12-07T03:12:41Z) - Understanding the World Through Action [91.3755431537592]
ラベルのないデータを利用するための汎用的で原則的で強力なフレームワークは、強化学習から導き出すことができると私は主張する。
このような手順が、下流の潜在的なタスクとどのように密接に一致しているかについて論じます。
論文 参考訳(メタデータ) (2021-10-24T22:33:52Z) - RTE: A Tool for Annotating Relation Triplets from Text [3.2958527541557525]
関係抽出では、2つの実体間の関係を参照する二項関係に焦点をあてる。
注釈付きクリーンデータセットの欠如は、この研究領域における重要な課題である。
本研究では、研究者が自身のデータセットで関係抽出に注釈を付けることができるウェブベースのツールを構築した。
論文 参考訳(メタデータ) (2021-08-18T14:54:22Z) - Diverse Complexity Measures for Dataset Curation in Self-driving [80.55417232642124]
トラフィックシーンの面白さを定量化する多様な基準を活用した新たなデータ選択手法を提案する。
実験の結果,提案するキュレーションパイプラインは,より汎用的で高いパフォーマンスをもたらすデータセットを選択できることが判明した。
論文 参考訳(メタデータ) (2021-01-16T23:45:02Z) - Interactive Weak Supervision: Learning Useful Heuristics for Data
Labeling [19.24454872492008]
弱監督は、基礎的な真理ラベルなしでラベル付きデータセットを作成するための有望な代替手段を提供する。
本稿では,対話型弱監督のための最初のフレームワークを開発し,その手法が反復を提案し,ユーザフィードバックから学習する。
私たちの実験は、非常に競争力のあるテストセット性能を達成するモデルのトレーニングに少数のフィードバックが必要であることを示しています。
論文 参考訳(メタデータ) (2020-12-11T00:10:38Z) - Synthetic Data: Opening the data floodgates to enable faster, more
directed development of machine learning methods [96.92041573661407]
機械学習における画期的な進歩の多くは、大量のリッチデータを利用できることに起因する。
多くの大規模データセットは、医療データなど高度に敏感であり、機械学習コミュニティでは広く利用できない。
プライバシー保証で合成データを生成することは、そのようなソリューションを提供します。
論文 参考訳(メタデータ) (2020-12-08T17:26:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。