Exposing Assumptions in AI Benchmarks through Cognitive Modelling
- URL: http://arxiv.org/abs/2409.16849v1
- Date: Wed, 25 Sep 2024 11:55:02 GMT
- Title: Exposing Assumptions in AI Benchmarks through Cognitive Modelling
- Authors: Jonathan H. Rystrøm, Kenneth C. Enevoldsen,
- Abstract summary: Cultural AI benchmarks often rely on implicit assumptions about measured constructs, leading to vague formulations with poor validity and unclear interrelations.
We propose exposing these assumptions using explicit cognitive models formulated as Structural Equation Models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cultural AI benchmarks often rely on implicit assumptions about measured constructs, leading to vague formulations with poor validity and unclear interrelations. We propose exposing these assumptions using explicit cognitive models formulated as Structural Equation Models. Using cross-lingual alignment transfer as an example, we show how this approach can answer key research questions and identify missing datasets. This framework grounds benchmark construction theoretically and guides dataset development to improve construct measurement. By embracing transparency, we move towards more rigorous, cumulative AI evaluation science, challenging researchers to critically examine their assessment foundations.
Related papers
- Analyzing Generative Models by Manifold Entropic Metrics [8.477943884416023]
We introduce a novel set of tractable information-theoretic evaluation metrics.
We compare various normalizing flow architectures and $beta$-VAEs on the EMNIST dataset.
The most interesting finding of our experiments is a ranking of model architectures and training procedures in terms of their inductive bias to converge to aligned and disentangled representations during training.
arXiv Detail & Related papers (2024-10-25T09:35:00Z) - Learning to Generate and Evaluate Fact-checking Explanations with Transformers [10.970249299147866]
Research contributes to the field of Explainable Artificial Antelligence (XAI)
We develop transformer-based fact-checking models that contextualise and justify their decisions by generating human-accessible explanations.
We emphasise the need for aligning Artificial Intelligence (AI)-generated explanations with human judgements.
arXiv Detail & Related papers (2024-10-21T06:22:51Z) - Benchmarks as Microscopes: A Call for Model Metrology [76.64402390208576]
Modern language models (LMs) pose a new challenge in capability assessment.
To be confident in our metrics, we need a new discipline of model metrology.
arXiv Detail & Related papers (2024-07-22T17:52:12Z) - Towards a Unified Framework for Evaluating Explanations [0.6138671548064356]
We argue that explanations serve as mediators between models and stakeholders, whether for intrinsically interpretable models or opaque black-box models.
We illustrate these criteria, as well as specific evaluation methods, using examples from an ongoing study of an interpretable neural network for predicting a particular learner behavior.
arXiv Detail & Related papers (2024-05-22T21:49:28Z) - EXACT: Towards a platform for empirically benchmarking Machine Learning model explanation methods [1.6383837447674294]
This paper brings together various benchmark datasets and novel performance metrics in an initial benchmarking platform.
Our datasets incorporate ground truth explanations for class-conditional features.
This platform assesses the performance of post-hoc XAI methods in the quality of the explanations they produce.
arXiv Detail & Related papers (2024-05-20T14:16:06Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
The ability of text embedding models to generalize across a wide range of syntactic contexts remains under-explored.
Our findings reveal that existing text embedding models have not sufficiently addressed these syntactic understanding challenges.
We propose strategies to augment the generalization ability of text embedding models in diverse syntactic scenarios.
arXiv Detail & Related papers (2023-11-14T08:51:00Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
Learning causal structure poses a search problem that typically involves evaluating structures using a score or independence test.
We train a variational inference model to predict the causal structure from observational/interventional data.
Our models exhibit robust generalization capabilities under substantial distribution shift.
arXiv Detail & Related papers (2022-05-25T17:37:08Z) - CogME: A Cognition-Inspired Multi-Dimensional Evaluation Metric for Story Understanding [19.113385429326808]
We introduce CogME, a cognition-inspired, multi-dimensional evaluation metric designed for AI models focusing on story understanding.
We argue the need for metrics based on understanding the nature of tasks and designed to align closely with human cognitive processes.
This approach provides insights beyond traditional overall scores and paves the way for more sophisticated AI development targeting higher cognitive functions.
arXiv Detail & Related papers (2021-07-21T02:33:37Z) - Enhancing Dialogue Generation via Multi-Level Contrastive Learning [57.005432249952406]
We propose a multi-level contrastive learning paradigm to model the fine-grained quality of the responses with respect to the query.
A Rank-aware (RC) network is designed to construct the multi-level contrastive optimization objectives.
We build a Knowledge Inference (KI) component to capture the keyword knowledge from the reference during training and exploit such information to encourage the generation of informative words.
arXiv Detail & Related papers (2020-09-19T02:41:04Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
We propose to adopt the post-hoc method to tackle the interpretability issue for deep learning based knowledge tracing (DLKT) models.
Specifically, we focus on applying the layer-wise relevance propagation (LRP) method to interpret RNN-based DLKT model.
Experiment results show the feasibility using the LRP method for interpreting the DLKT model's predictions.
arXiv Detail & Related papers (2020-05-13T04:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.