StructTest: Benchmarking LLMs' Reasoning through Compositional Structured Outputs
- URL: http://arxiv.org/abs/2412.18011v2
- Date: Wed, 19 Mar 2025 19:37:12 GMT
- Title: StructTest: Benchmarking LLMs' Reasoning through Compositional Structured Outputs
- Authors: Hailin Chen, Fangkai Jiao, Mathieu Ravaut, Nawshad Farruque, Xuan Phi Nguyen, Chengwei Qin, Manan Dey, Bosheng Ding, Caiming Xiong, Shafiq Joty, Yingbo Zhou,
- Abstract summary: StructTest is a novel benchmark that evaluates large language models (LLMs) on their ability to follow compositional instructions and generate structured outputs.<n> Assessments are conducted deterministically using a rule-based evaluator, which can be easily extended to new tasks and datasets.<n>We demonstrate that StructTest remains challenging even for top-performing models like Deepseek-V3/R1 and GPT-4o.
- Score: 78.84060166851805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of large language models (LLMs) demands robust, unbiased, and scalable evaluation methods. However, human annotations are costly to scale, model-based evaluations are susceptible to stylistic biases, and target-answer-based benchmarks are vulnerable to data contamination and cheating. To address these limitations, we propose StructTest, a novel benchmark that evaluates LLMs on their ability to follow compositional instructions and generate structured outputs, providing an unbiased, cost-effective, and difficult-to-cheat evaluation framework. Assessments are conducted deterministically using a rule-based evaluator, which can be easily extended to new tasks and datasets. By testing structured outputs across diverse domains including Summarization, Code, HTML, and Math, and evaluating 17 popular LLMs, we demonstrate that StructTest remains challenging even for top-performing models like Deepseek-V3/R1 and GPT-4o, establishing it as a robust proxy for measuring reasoning capabilities. We believe StructTest offers a critical and complementary approach to achieving objective and comprehensive model evaluation.
Related papers
- Learning to Align Multi-Faceted Evaluation: A Unified and Robust Framework [61.38174427966444]
Large Language Models (LLMs) are being used more and more extensively for automated evaluation in various scenarios.
Previous studies have attempted to fine-tune open-source LLMs to replicate the evaluation explanations and judgments of powerful proprietary models.
We propose a novel evaluation framework, ARJudge, that adaptively formulates evaluation criteria and synthesizes both text-based and code-driven analyses.
arXiv Detail & Related papers (2025-02-26T06:31:45Z) - Beyond the Singular: The Essential Role of Multiple Generations in Effective Benchmark Evaluation and Analysis [10.133537818749291]
Large language models (LLMs) have demonstrated significant utilities in real-world applications.
Benchmark evaluations are crucial for assessing the capabilities of LLMs.
arXiv Detail & Related papers (2025-02-13T03:43:33Z) - The Vulnerability of Language Model Benchmarks: Do They Accurately Reflect True LLM Performance? [1.3810901729134184]
Large Language Models (LLMs) excel at standardized tests while failing to demonstrate genuine language understanding and adaptability.<n>Our systematic analysis of NLP evaluation frameworks reveals pervasive vulnerabilities across the evaluation spectrum.<n>We lay the groundwork for new evaluation methods that resist manipulation, minimize data contamination, and assess domain-specific tasks.
arXiv Detail & Related papers (2024-12-02T20:49:21Z) - SelfPrompt: Autonomously Evaluating LLM Robustness via Domain-Constrained Knowledge Guidelines and Refined Adversarial Prompts [0.6291443816903801]
This paper introduces a novel framework designed to autonomously evaluate the robustness of large language models (LLMs)
Our method generates descriptive sentences from domain-constrained knowledge graph triplets to formulate adversarial prompts.
This self-evaluation mechanism allows the LLM to evaluate its robustness without the need for external benchmarks.
arXiv Detail & Related papers (2024-12-01T10:58:53Z) - StructEval: Deepen and Broaden Large Language Model Assessment via Structured Evaluation [46.59416831869014]
We propose a novel evaluation framework referred to as StructEval.
Starting from an atomic test objective, StructEval deepens and broadens the evaluation by conducting a structured assessment across multiple cognitive levels and critical concepts.
Experiments on three widely-used benchmarks demonstrate that StructEval serves as a reliable tool for resisting the risk of data contamination.
arXiv Detail & Related papers (2024-08-06T16:28:30Z) - Enhancing LLM's Cognition via Structurization [41.13997892843677]
Large language models (LLMs) process input contexts through a causal and sequential perspective.
This paper presents a novel concept of context structurization.
Specifically, we transform the plain, unordered contextual sentences into well-ordered and hierarchically structurized elements.
arXiv Detail & Related papers (2024-07-23T12:33:58Z) - HD-Eval: Aligning Large Language Model Evaluators Through Hierarchical
Criteria Decomposition [92.17397504834825]
HD-Eval is a framework that iteratively aligns large language models evaluators with human preference.
HD-Eval inherits the essence from the evaluation mindset of human experts and enhances the alignment of LLM-based evaluators.
Extensive experiments on three evaluation domains demonstrate the superiority of HD-Eval in further aligning state-of-the-art evaluators.
arXiv Detail & Related papers (2024-02-24T08:01:32Z) - FollowEval: A Multi-Dimensional Benchmark for Assessing the
Instruction-Following Capability of Large Language Models [42.72420855478716]
FollowEval benchmark is composed of instances in both English and Chinese.
Each test example is designed to evaluate more than one dimension.
We have evaluated various LLMs using the FollowEval benchmark and found that their performance significantly lags behind that of humans.
arXiv Detail & Related papers (2023-11-16T11:53:31Z) - Benchmarking Generation and Evaluation Capabilities of Large Language Models for Instruction Controllable Summarization [132.25202059478065]
We benchmark large language models (LLMs) on instruction controllable text summarization.
Our study reveals that instruction controllable text summarization remains a challenging task for LLMs.
arXiv Detail & Related papers (2023-11-15T18:25:26Z) - FLASK: Fine-grained Language Model Evaluation based on Alignment Skill Sets [69.91340332545094]
We introduce FLASK, a fine-grained evaluation protocol for both human-based and model-based evaluation.
We experimentally observe that the fine-graininess of evaluation is crucial for attaining a holistic view of model performance.
arXiv Detail & Related papers (2023-07-20T14:56:35Z) - DecompEval: Evaluating Generated Texts as Unsupervised Decomposed
Question Answering [95.89707479748161]
Existing evaluation metrics for natural language generation (NLG) tasks face the challenges on generalization ability and interpretability.
We propose a metric called DecompEval that formulates NLG evaluation as an instruction-style question answering task.
We decompose our devised instruction-style question about the quality of generated texts into the subquestions that measure the quality of each sentence.
The subquestions with their answers generated by PLMs are then recomposed as evidence to obtain the evaluation result.
arXiv Detail & Related papers (2023-07-13T16:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.