On the Transition from Neural Representation to Symbolic Knowledge
- URL: http://arxiv.org/abs/2308.02000v1
- Date: Thu, 3 Aug 2023 19:29:35 GMT
- Title: On the Transition from Neural Representation to Symbolic Knowledge
- Authors: Junyan Cheng and Peter Chin
- Abstract summary: We propose a Neural-Symbolic Transitional Dictionary Learning (TDL) framework that employs an EM algorithm to learn a transitional representation of data.
We implement the framework with a diffusion model by regarding the decomposition of input as a cooperative game.
We additionally use RL enabled by the Markovian of diffusion models to further tune the learned prototypes.
- Score: 2.2528422603742304
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bridging the huge disparity between neural and symbolic representation can
potentially enable the incorporation of symbolic thinking into neural networks
from essence. Motivated by how human gradually builds complex symbolic
representation from the prototype symbols that are learned through perception
and environmental interactions. We propose a Neural-Symbolic Transitional
Dictionary Learning (TDL) framework that employs an EM algorithm to learn a
transitional representation of data that compresses high-dimension information
of visual parts of an input into a set of tensors as neural variables and
discover the implicit predicate structure in a self-supervised way. We
implement the framework with a diffusion model by regarding the decomposition
of input as a cooperative game, then learn predicates by prototype clustering.
We additionally use RL enabled by the Markovian of diffusion models to further
tune the learned prototypes by incorporating subjective factors. Extensive
experiments on 3 abstract compositional visual objects datasets that require
the model to segment parts without any visual features like texture, color, or
shadows apart from shape and 3 neural/symbolic downstream tasks demonstrate the
learned representation enables interpretable decomposition of visual input and
smooth adaption to downstream tasks which are not available by existing
methods.
Related papers
- Linking in Style: Understanding learned features in deep learning models [0.0]
Convolutional neural networks (CNNs) learn abstract features to perform object classification.
We propose an automatic method to visualize and systematically analyze learned features in CNNs.
arXiv Detail & Related papers (2024-09-25T12:28:48Z) - Neural Clustering based Visual Representation Learning [61.72646814537163]
Clustering is one of the most classic approaches in machine learning and data analysis.
We propose feature extraction with clustering (FEC), which views feature extraction as a process of selecting representatives from data.
FEC alternates between grouping pixels into individual clusters to abstract representatives and updating the deep features of pixels with current representatives.
arXiv Detail & Related papers (2024-03-26T06:04:50Z) - Neural Language of Thought Models [18.930227757853313]
We introduce the Neural Language of Thought Model (NLoTM), a novel approach for unsupervised learning of LoTH-inspired representation and generation.
NLoTM comprises two key components: (1) the Semantic Vector-Quantized Variational Autoencoder, which learns hierarchical, composable discrete representations aligned with objects and their properties, and (2) the Autoregressive LoT Prior, an autoregressive transformer that learns to generate semantic concept tokens compositionally.
We evaluate NLoTM on several 2D and 3D image datasets, demonstrating superior performance in downstream tasks, out-of-distribution generalization, and image generation
arXiv Detail & Related papers (2024-02-02T08:13:18Z) - Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
We aim to reduce human workload by predicting connectivity between over-segmented neuron pieces.
We first construct a dataset, named FlyTracing, that contains millions of pairwise connections of segments expanding the whole fly brain.
We propose a novel connectivity-aware contrastive learning method to generate dense volumetric EM image embedding.
arXiv Detail & Related papers (2024-01-05T19:45:12Z) - Discrete, compositional, and symbolic representations through attractor dynamics [51.20712945239422]
We introduce a novel neural systems model that integrates attractor dynamics with symbolic representations to model cognitive processes akin to the probabilistic language of thought (PLoT)
Our model segments the continuous representational space into discrete basins, with attractor states corresponding to symbolic sequences, that reflect the semanticity and compositionality characteristic of symbolic systems through unsupervised learning, rather than relying on pre-defined primitives.
This approach establishes a unified framework that integrates both symbolic and sub-symbolic processing through neural dynamics, a neuroplausible substrate with proven expressivity in AI, offering a more comprehensive model that mirrors the complex duality of cognitive operations
arXiv Detail & Related papers (2023-10-03T05:40:56Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEG is a holistic visual semantic that integrates neural inductive learning and logic reasoning with both rich data and symbolic knowledge.
During fuzzy logic-based continuous relaxation, logical formulae are grounded onto data and neural computational graphs, hence enabling logic-induced network training.
These designs together make LOGICSEG a general and compact neural-logic machine that is readily integrated into existing segmentation models.
arXiv Detail & Related papers (2023-09-24T05:43:19Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
This paper presents a new symbolic-only method for the generation of hierarchical concept structures from complex sensory data.
The approach is based on Bateson's notion of difference as the key to the genesis of an idea or a concept.
The model is able to produce fairly rich yet human-readable conceptual representations without training.
arXiv Detail & Related papers (2023-07-16T15:59:13Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Drop, Swap, and Generate: A Self-Supervised Approach for Generating
Neural Activity [33.06823702945747]
We introduce a novel unsupervised approach for learning disentangled representations of neural activity called Swap-VAE.
Our approach combines a generative modeling framework with an instance-specific alignment loss.
We show that it is possible to build representations that disentangle neural datasets along relevant latent dimensions linked to behavior.
arXiv Detail & Related papers (2021-11-03T16:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.