Feedforward Controllers from Learned Dynamic Local Model Networks with Application to Excavator Assistance Functions
- URL: http://arxiv.org/abs/2409.16875v1
- Date: Wed, 25 Sep 2024 12:40:07 GMT
- Title: Feedforward Controllers from Learned Dynamic Local Model Networks with Application to Excavator Assistance Functions
- Authors: Leon Greiser, Ozan Demir, Benjamin Hartmann, Henrik Hose, Sebastian Trimpe,
- Abstract summary: We provide a criterion for when feedback linearization of LMNs with zero dynamics yields a valid controller.
In our experiments, incorporating disturbance signals and multiple inputs and outputs enhances tracking performance of the learned controller.
- Score: 4.664767161598515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Complicated first principles modelling and controller synthesis can be prohibitively slow and expensive for high-mix, low-volume products such as hydraulic excavators. Instead, in a data-driven approach, recorded trajectories from the real system can be used to train local model networks (LMNs), for which feedforward controllers are derived via feedback linearization. However, previous works required LMNs without zero dynamics for feedback linearization, which restricts the model structure and thus modelling capacity of LMNs. In this paper, we overcome this restriction by providing a criterion for when feedback linearization of LMNs with zero dynamics yields a valid controller. As a criterion we propose the bounded-input bounded-output stability of the resulting controller. In two additional contributions, we extend this approach to consider measured disturbance signals and multiple inputs and outputs. We illustrate the effectiveness of our contributions in a hydraulic excavator control application with hardware experiments. To this end, we train LMNs from recorded, noisy data and derive feedforward controllers used as part of a leveling assistance system on the excavator. In our experiments, incorporating disturbance signals and multiple inputs and outputs enhances tracking performance of the learned controller. A video of our experiments is available at https://youtu.be/lrrWBx2ASaE.
Related papers
- Denoising Diffusion-Based Control of Nonlinear Systems [3.4530027457862]
We propose a novel approach based on Denoising Diffusion Probabilistic Models (DDPMs) to control nonlinear dynamical systems.
DDPMs are the state-of-art of generative models that have achieved success in a wide variety of sampling tasks.
We numerically study our approach on various nonlinear systems and verify our theoretical results.
arXiv Detail & Related papers (2024-02-03T23:19:26Z) - A comparison of RL-based and PID controllers for 6-DOF swimming robots:
hybrid underwater object tracking [8.362739554991073]
We present an exploration and assessment of employing a centralized deep Q-network (DQN) controller as a substitute for PID controllers.
Our primary focus centers on illustrating this transition with the specific case of underwater object tracking.
Our experiments, conducted within a Unity-based simulator, validate the effectiveness of a centralized RL agent over separated PID controllers.
arXiv Detail & Related papers (2024-01-29T23:14:15Z) - Controlling dynamical systems to complex target states using machine
learning: next-generation vs. classical reservoir computing [68.8204255655161]
Controlling nonlinear dynamical systems using machine learning allows to drive systems into simple behavior like periodicity but also to more complex arbitrary dynamics.
We show first that classical reservoir computing excels at this task.
In a next step, we compare those results based on different amounts of training data to an alternative setup, where next-generation reservoir computing is used instead.
It turns out that while delivering comparable performance for usual amounts of training data, next-generation RC significantly outperforms in situations where only very limited data is available.
arXiv Detail & Related papers (2023-07-14T07:05:17Z) - UnLoc: A Universal Localization Method for Autonomous Vehicles using
LiDAR, Radar and/or Camera Input [51.150605800173366]
UnLoc is a novel unified neural modeling approach for localization with multi-sensor input in all weather conditions.
Our method is extensively evaluated on Oxford Radar RobotCar, ApolloSouthBay and Perth-WA datasets.
arXiv Detail & Related papers (2023-07-03T04:10:55Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
We propose a simple algorithm called Diffused Value Function (DVF)
It learns a joint multi-step model of the environment-robot interaction dynamics using a diffusion model.
We show how DVF can be used to efficiently capture the state visitation measure for multiple controllers.
arXiv Detail & Related papers (2023-06-09T18:40:55Z) - Designing a Robust Low-Level Agnostic Controller for a Quadrotor with
Actor-Critic Reinforcement Learning [0.38073142980732994]
We introduce domain randomization during the training phase of a low-level waypoint guidance controller based on Soft Actor-Critic.
We show that, by introducing a certain degree of uncertainty in quadrotor dynamics during training, we can obtain a controller that is capable to perform the proposed task using a larger variation of quadrotor parameters.
arXiv Detail & Related papers (2022-10-06T14:58:19Z) - Automatic Rule Induction for Efficient Semi-Supervised Learning [56.91428251227253]
Semi-supervised learning has shown promise in allowing NLP models to generalize from small amounts of labeled data.
Pretrained transformer models act as black-box correlation engines that are difficult to explain and sometimes behave unreliably.
We propose tackling both of these challenges via Automatic Rule Induction (ARI), a simple and general-purpose framework.
arXiv Detail & Related papers (2022-05-18T16:50:20Z) - An Offset-Free Nonlinear MPC scheme for systems learned by Neural NARX
models [0.803314610321292]
This paper deals with the design of nonlinear MPC controllers that provide offset-free setpoint tracking.
The proposed scheme attains remarkable performances even in presence of disturbances acting on the plant.
arXiv Detail & Related papers (2022-03-30T13:30:07Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Optimal PID and Antiwindup Control Design as a Reinforcement Learning
Problem [3.131740922192114]
We focus on the interpretability of DRL control methods.
In particular, we view linear fixed-structure controllers as shallow neural networks embedded in the actor-critic framework.
arXiv Detail & Related papers (2020-05-10T01:05:26Z) - Improving Input-Output Linearizing Controllers for Bipedal Robots via
Reinforcement Learning [85.13138591433635]
The main drawbacks of input-output linearizing controllers are the need for precise dynamics models and not being able to account for input constraints.
In this paper, we address both challenges for the specific case of bipedal robot control by the use of reinforcement learning techniques.
arXiv Detail & Related papers (2020-04-15T18:15:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.