Robotic Backchanneling in Online Conversation Facilitation: A Cross-Generational Study
- URL: http://arxiv.org/abs/2409.16899v1
- Date: Wed, 25 Sep 2024 13:08:43 GMT
- Title: Robotic Backchanneling in Online Conversation Facilitation: A Cross-Generational Study
- Authors: Sota Kobuki, Katie Seaborn, Seiki Tokunaga, Kosuke Fukumori, Shun Hidaka, Kazuhiro Tamura, Koji Inoue, Tatsuya Kawahara, Mihoko Otake-Mastuura,
- Abstract summary: Japan faces many challenges related to its aging society, including increasing rates of cognitive decline in the population and a shortage of caregivers.
Efforts have begun to explore solutions using artificial intelligence (AI), especially socially embodied intelligent agents and robots that can communicate with people.
We conducted a user study to evaluate a robot that functions as a facilitator for a group conversation protocol designed to prevent cognitive decline.
We modified the robot to use backchannelling, a natural human way of speaking, to increase receptiveness of the robot and enjoyment of the group conversation experience.
- Score: 36.065558339939095
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Japan faces many challenges related to its aging society, including increasing rates of cognitive decline in the population and a shortage of caregivers. Efforts have begun to explore solutions using artificial intelligence (AI), especially socially embodied intelligent agents and robots that can communicate with people. Yet, there has been little research on the compatibility of these agents with older adults in various everyday situations. To this end, we conducted a user study to evaluate a robot that functions as a facilitator for a group conversation protocol designed to prevent cognitive decline. We modified the robot to use backchannelling, a natural human way of speaking, to increase receptiveness of the robot and enjoyment of the group conversation experience. We conducted a cross-generational study with young adults and older adults. Qualitative analyses indicated that younger adults perceived the backchannelling version of the robot as kinder, more trustworthy, and more acceptable than the non-backchannelling robot. Finally, we found that the robot's backchannelling elicited nonverbal backchanneling in older participants.
Related papers
- Human-Robot Mutual Learning through Affective-Linguistic Interaction and Differential Outcomes Training [Pre-Print] [0.3811184252495269]
We test how affective-linguistic communication, in combination with differential outcomes training, affects mutual learning in a human-robot context.
Taking inspiration from child- caregiver dynamics, our human-robot interaction setup consists of a (simulated) robot attempting to learn how best to communicate internal, homeostatically-controlled needs.
arXiv Detail & Related papers (2024-07-01T13:35:08Z) - Towards Privacy-Aware and Personalised Assistive Robots: A User-Centred Approach [55.5769013369398]
This research pioneers user-centric, privacy-aware technologies such as Federated Learning (FL)
FL enables collaborative learning without sharing sensitive data, addressing privacy and scalability issues.
This work includes developing solutions for smart wheelchair assistance, enhancing user independence and well-being.
arXiv Detail & Related papers (2024-05-23T13:14:08Z) - Human Reactions to Incorrect Answers from Robots [0.0]
The study systematically studies how trust dynamics and system design are affected by human responses to robot failures.
Results show that participants' trust in robotic technologies increased significantly when robots acknowledged their errors or limitations.
The study advances the science of human-robot interaction and promotes a wider adoption of robotic technologies.
arXiv Detail & Related papers (2024-03-21T11:00:11Z) - HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
We present a high-dimensional, simulated robot learning benchmark, HumanoidBench, featuring a humanoid robot equipped with dexterous hands.
Our findings reveal that state-of-the-art reinforcement learning algorithms struggle with most tasks, whereas a hierarchical learning approach achieves superior performance when supported by robust low-level policies.
arXiv Detail & Related papers (2024-03-15T17:45:44Z) - Real-time Addressee Estimation: Deployment of a Deep-Learning Model on
the iCub Robot [52.277579221741746]
Addressee Estimation is a skill essential for social robots to interact smoothly with humans.
Inspired by human perceptual skills, a deep-learning model for Addressee Estimation is designed, trained, and deployed on an iCub robot.
The study presents the procedure of such implementation and the performance of the model deployed in real-time human-robot interaction.
arXiv Detail & Related papers (2023-11-09T13:01:21Z) - Continuous ErrP detections during multimodal human-robot interaction [2.5199066832791535]
We implement a multimodal human-robot interaction (HRI) scenario, in which a simulated robot communicates with its human partner through speech and gestures.
The human partner, in turn, evaluates whether the robot's verbal announcement (intention) matches the action (pointing gesture) chosen by the robot.
In intrinsic evaluations of robot actions by humans, evident in the EEG, were recorded in real time, continuously segmented online and classified asynchronously.
arXiv Detail & Related papers (2022-07-25T15:39:32Z) - Towards a Real-time Measure of the Perception of Anthropomorphism in
Human-robot Interaction [5.112850258732114]
We conducted an online human-robot interaction experiment in an educational use-case scenario.
43 English-speaking participants took part in the study.
We found that the degree of subjective and objective perception of anthropomorphism positively correlates with acoustic-prosodic entrainment.
arXiv Detail & Related papers (2022-01-24T11:10:37Z) - Let's be friends! A rapport-building 3D embodied conversational agent
for the Human Support Robot [0.0]
Partial subtle mirroring of nonverbal behaviors during conversations (also known as mimicking or parallel empathy) is essential for rapport building.
Our research question is whether integrating an ECA able to mirror its interlocutor's facial expressions and head movements with a human-service robot will improve the user's experience.
Our contribution is the complex integration of an expressive ECA, able to track its interlocutor's face, and to mirror his/her facial expressions and head movements in real time, integrated with a human support robot.
arXiv Detail & Related papers (2021-03-08T01:02:41Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
We propose a novel explainable AI (XAI) framework for achieving human-like communication in human-robot collaborations.
The robot builds a hierarchical mind model of the human user and generates explanations of its own mind as a form of communications.
Results show that the generated explanations of our approach significantly improves the collaboration performance and user perception of the robot.
arXiv Detail & Related papers (2020-07-24T23:35:03Z) - Human Grasp Classification for Reactive Human-to-Robot Handovers [50.91803283297065]
We propose an approach for human-to-robot handovers in which the robot meets the human halfway.
We collect a human grasp dataset which covers typical ways of holding objects with various hand shapes and poses.
We present a planning and execution approach that takes the object from the human hand according to the detected grasp and hand position.
arXiv Detail & Related papers (2020-03-12T19:58:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.