論文の概要: Going Beyond U-Net: Assessing Vision Transformers for Semantic Segmentation in Microscopy Image Analysis
- arxiv url: http://arxiv.org/abs/2409.16940v1
- Date: Wed, 25 Sep 2024 13:53:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-27 03:35:11.266183
- Title: Going Beyond U-Net: Assessing Vision Transformers for Semantic Segmentation in Microscopy Image Analysis
- Title(参考訳): U-Netを超える:顕微鏡画像解析におけるセマンティックセグメンテーションのための視覚変換器の評価
- Authors: Illia Tsiporenko, Pavel Chizhov, Dmytro Fishman,
- Abstract要約: トランスモデルは顕微鏡画像のセグメンテーションプロセスを強化することを約束します。
我々は、UNETR、Segment Anything Model、Swin-UPerNetなどのトランスフォーマーの有効性を評価し、確立されたU-Netモデルと比較する。
その結果,従来のU-NetモデルやUnmodified Swin-UPerNetと比較してセグメンテーション性能が向上した。
- 参考スコア(独自算出の注目度): 4.151073288078749
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Segmentation is a crucial step in microscopy image analysis. Numerous approaches have been developed over the past years, ranging from classical segmentation algorithms to advanced deep learning models. While U-Net remains one of the most popular and well-established models for biomedical segmentation tasks, recently developed transformer-based models promise to enhance the segmentation process of microscopy images. In this work, we assess the efficacy of transformers, including UNETR, the Segment Anything Model, and Swin-UPerNet, and compare them with the well-established U-Net model across various image modalities such as electron microscopy, brightfield, histopathology, and phase-contrast. Our evaluation identifies several limitations in the original Swin Transformer model, which we address through architectural modifications to optimise its performance. The results demonstrate that these modifications improve segmentation performance compared to the classical U-Net model and the unmodified Swin-UPerNet. This comparative analysis highlights the promise of transformer models for advancing biomedical image segmentation. It demonstrates that their efficiency and applicability can be improved with careful modifications, facilitating their future use in microscopy image analysis tools.
- Abstract(参考訳): セグメンテーションは顕微鏡画像解析における重要なステップである。
過去数年間、古典的なセグメンテーションアルゴリズムから高度なディープラーニングモデルまで、数多くのアプローチが開発されてきた。
U-Netは、バイオメディカルセグメンテーションタスクの最も人気があり、確立されたモデルの1つだが、最近開発されたトランスフォーマーベースのモデルは、顕微鏡画像のセグメンテーションプロセスを強化することを約束している。
本研究では,UNETR,Segment Anything Model,Swin-UPerNetなどのトランスフォーマーの有効性を評価し,電子顕微鏡,明視野,病理組織学,位相コントラストなど,様々な画像モダリティで確立されたU-Netモデルと比較する。
本評価では,Swin Transformerモデルの性能を最適化するために,アーキテクチャ変更を通じて対処する,オリジナルのSwin Transformerモデルにおけるいくつかの制限を識別する。
その結果,従来のU-NetモデルやUnmodified Swin-UPerNetと比較してセグメンテーション性能が向上した。
この比較分析は、バイオメディカルイメージセグメンテーションを進めるためのトランスフォーマーモデルの可能性を浮き彫りにしている。
これは、その効率性と適用性は、慎重に修正することで改善できることを示し、顕微鏡画像解析ツールの将来的な利用を促進する。
関連論文リスト
- MedVisionLlama: Leveraging Pre-Trained Large Language Model Layers to Enhance Medical Image Segmentation [0.8437187555622164]
本研究では、予め訓練されたLCMトランスブロックを統合することで、医用画像セグメンテーションのためのビジョントランス(ViT)の強化について検討する。
凍結LDM変換器ブロックをViTモデルエンコーダに組み込んだ手法により,セグメント化性能が大幅に向上した。
改良されたモデルでは、平均Diceスコアが0.74から0.79に向上し、精度、精度、ジャカード指数が向上した。
論文 参考訳(メタデータ) (2024-10-03T14:50:33Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - SeUNet-Trans: A Simple yet Effective UNet-Transformer Model for Medical
Image Segmentation [0.0]
医用画像セグメンテーションのためのシンプルなUNet-Transformer(seUNet-Trans)モデルを提案する。
提案手法では,UNetモデルを特徴抽出器として設計し,入力画像から複数の特徴マップを生成する。
UNetアーキテクチャと自己認識機構を活用することで、我々のモデルはローカルとグローバルの両方のコンテキスト情報を保存するだけでなく、入力要素間の長距離依存関係をキャプチャできる。
論文 参考訳(メタデータ) (2023-10-16T01:13:38Z) - MedSegDiff-V2: Diffusion based Medical Image Segmentation with
Transformer [53.575573940055335]
我々は、MedSegDiff-V2と呼ばれるトランスフォーマーベースの拡散フレームワークを提案する。
画像の異なる20種類の画像分割作業において,その有効性を検証する。
論文 参考訳(メタデータ) (2023-01-19T03:42:36Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Class-Aware Generative Adversarial Transformers for Medical Image
Segmentation [39.14169989603906]
医用画像セグメンテーションのための新規な生成逆変換器CA-GANformerを提案する。
まず、ピラミッド構造を利用してマルチスケール表現を構築し、マルチスケールのバリエーションを扱う。
次に、意味構造を持つオブジェクトの識別領域をよりよく学習するために、新しいクラス対応トランスフォーマーモジュールを設計する。
論文 参考訳(メタデータ) (2022-01-26T03:50:02Z) - Transformer-Unet: Raw Image Processing with Unet [4.7944896477309555]
Unetの機能マップの代わりに、生画像にトランスフォーマーモジュールを追加することで、Transformer-Unetを提案する。
実験では、エンド・ツー・エンドのネットワークを構築し、従来の多くのUnetベースのアルゴリズムよりもセグメンテーション結果を得る。
論文 参考訳(メタデータ) (2021-09-17T09:03:10Z) - Evaluating Transformer based Semantic Segmentation Networks for
Pathological Image Segmentation [2.7029872968576947]
病理は癌診断において重要な役割を担っている。
コンピュータ支援型病理画像解析において, 様々なCNNを用いた病理画像分割手法が開発されている。
Transformer Neural Network(Transformer)は、新たなディープラーニングパラダイムとして、画像全体にわたるグローバルな長距離依存関係をキャプチャする、ユニークなメリットを示している。
論文 参考訳(メタデータ) (2021-08-26T18:46:43Z) - Visformer: The Vision-friendly Transformer [105.52122194322592]
我々は視覚に優しいトランスフォーマーから短縮したvisformerという新しいアーキテクチャを提案する。
同じ計算の複雑さにより、VisformerはTransformerベースのモデルとConvolutionベースのモデルの両方をImageNet分類精度で上回る。
論文 参考訳(メタデータ) (2021-04-26T13:13:03Z) - Medical Transformer: Gated Axial-Attention for Medical Image
Segmentation [73.98974074534497]
医用画像分割タスクにおけるトランスフォーマティブネットワークアーキテクチャの利用可能性について検討する。
セルフアテンションモジュールに追加の制御機構を導入することで,既存のアーキテクチャを拡張するGated Axial-Attentionモデルを提案する。
医療画像上で効果的にモデルを訓練するために,さらにパフォーマンスを向上させる局所的グローバルトレーニング戦略 (logo) を提案する。
論文 参考訳(メタデータ) (2021-02-21T18:35:14Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。