Scalable Multi-Robot Informative Path Planning for Target Mapping via Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2409.16967v3
- Date: Mon, 02 Jun 2025 19:56:43 GMT
- Title: Scalable Multi-Robot Informative Path Planning for Target Mapping via Deep Reinforcement Learning
- Authors: Apoorva Vashisth, Manav Kulshrestha, Damon Conover, Aniket Bera,
- Abstract summary: We propose a deep reinforcement learning approach for the Multi-Robot Informative Path Planning problem.<n>Here, each robot aims to maximize discovered targets, avoid unknown static obstacles, and prevent inter-robot collisions.<n>Our approach outperforms state-of-the-art approaches by at least 26.2% in terms of the number of discovered targets.
- Score: 11.134855513221359
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous robots are widely utilized for mapping and exploration tasks due to their cost-effectiveness. Multi-robot systems offer scalability and efficiency, especially in terms of the number of robots deployed in more complex environments. These tasks belong to the set of Multi-Robot Informative Path Planning (MRIPP) problems. In this paper, we propose a deep reinforcement learning approach for the MRIPP problem. We aim to maximize the number of discovered stationary targets in an unknown 3D environment while operating under resource constraints (such as path length). Here, each robot aims to maximize discovered targets, avoid unknown static obstacles, and prevent inter-robot collisions while operating under communication and resource constraints. We utilize the centralized training and decentralized execution paradigm to train a single policy neural network. A key aspect of our approach is our coordination graph that prioritizes visiting regions not yet explored by other robots. Our learned policy can be copied onto any number of robots for deployment in more complex environments not seen during training. Our approach outperforms state-of-the-art approaches by at least 26.2% in terms of the number of discovered targets while requiring a planning time of less than 2 sec per step. We present results for more complex environments with up to 64 robots and compare success rates against baseline planners. Our code and trained model are available at - https://github.com/AccGen99/marl_ipp
Related papers
- Generalizability of Graph Neural Networks for Decentralized Unlabeled Motion Planning [72.86540018081531]
Unlabeled motion planning involves assigning a set of robots to target locations while ensuring collision avoidance.
This problem forms an essential building block for multi-robot systems in applications such as exploration, surveillance, and transportation.
We address this problem in a decentralized setting where each robot knows only the positions of its $k$-nearest robots and $k$-nearest targets.
arXiv Detail & Related papers (2024-09-29T23:57:25Z) - Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search [84.39855372157616]
This paper supports robotic parts-to-picker operations in warehousing by optimizing order-workstation assignments, item-pod assignments and the schedule of order fulfillment at workstations.
We solve it via large-scale neighborhood search, with a novel learn-then-optimize approach to subproblem generation.
In collaboration with Amazon Robotics, we show that our model and algorithm generate much stronger solutions for practical problems than state-of-the-art approaches.
arXiv Detail & Related papers (2024-08-29T20:22:22Z) - Online Concurrent Multi-Robot Coverage Path Planning [5.801044612920816]
In a horizon, the path planning and the path execution interleave, meaning when the path planning occurs for robots with no paths, the robots with outstanding paths do not execute.<n>We propose a centralized algorithm that is not horizon-based.<n>It plans paths at any time for a subset of robots with no paths, who have reached their previously assigned goals, while the rest execute their outstanding paths.
arXiv Detail & Related papers (2024-03-15T16:51:30Z) - Deep Reinforcement Learning with Dynamic Graphs for Adaptive Informative Path Planning [22.48658555542736]
Key task in robotic data acquisition is planning paths through an initially unknown environment to collect observations.
We propose a novel deep reinforcement learning approach for adaptively replanning robot paths to map targets of interest in unknown 3D environments.
arXiv Detail & Related papers (2024-02-07T14:24:41Z) - Scalable Multi-robot Motion Planning for Congested Environments With
Topological Guidance [2.846144602096543]
Multi-robot motion planning (MRMP) is the problem of finding collision-free paths for a set of robots in a continuous state space.
We extend an existing single-robot motion planning method to leverage the improved efficiency provided by topological guidance.
We demonstrate our method's ability to efficiently plan paths in complex environments with many narrow passages, scaling to robot teams of size up to 25 times larger than existing methods.
arXiv Detail & Related papers (2022-10-13T16:26:01Z) - DC-MRTA: Decentralized Multi-Robot Task Allocation and Navigation in
Complex Environments [55.204450019073036]
We present a novel reinforcement learning based task allocation and decentralized navigation algorithm for mobile robots in warehouse environments.
We consider the problem of joint decentralized task allocation and navigation and present a two level approach to solve it.
We observe improvement up to 14% in terms of task completion time and up-to 40% improvement in terms of computing collision-free trajectories for the robots.
arXiv Detail & Related papers (2022-09-07T00:35:27Z) - Learning to Coordinate for a Worker-Station Multi-robot System in Planar
Coverage Tasks [16.323122275188354]
We focus on the multi-robot coverage path planning problem in large-scale planar areas with random dynamic interferers.
We introduce a worker-station MRS consisting of multiple workers with limited resources for actual work, and one station with enough resources for resource replenishment.
We propose an end-to-end decentralized online planning method, which simultaneously solves coverage planning for workers and rendezvous planning for station.
arXiv Detail & Related papers (2022-08-05T05:36:42Z) - Intention Aware Robot Crowd Navigation with Attention-Based Interaction
Graph [3.8461692052415137]
We study the problem of safe and intention-aware robot navigation in dense and interactive crowds.
We propose a novel recurrent graph neural network with attention mechanisms to capture heterogeneous interactions among agents.
We demonstrate that our method enables the robot to achieve good navigation performance and non-invasiveness in challenging crowd navigation scenarios.
arXiv Detail & Related papers (2022-03-03T16:26:36Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
We consider the problem of transferring a policy across two different robots with significantly different parameters such as kinematics and morphology.
Existing approaches that train a new policy by matching the action or state transition distribution, including imitation learning methods, fail due to optimal action and/or state distribution being mismatched in different robots.
We propose a novel method named $REvolveR$ of using continuous evolutionary models for robotic policy transfer implemented in a physics simulator.
arXiv Detail & Related papers (2022-02-10T18:50:25Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Graph Neural Networks for Decentralized Multi-Robot Submodular Action
Selection [101.38634057635373]
We focus on applications where robots are required to jointly select actions to maximize team submodular objectives.
We propose a general-purpose learning architecture towards submodular at scale, with decentralized communications.
We demonstrate the performance of our GNN-based learning approach in a scenario of active target coverage with large networks of robots.
arXiv Detail & Related papers (2021-05-18T15:32:07Z) - Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms [60.59764170868101]
Reinforcement learning methods can achieve significant performance but require a large amount of training data collected on the same robotic platform.
We formulate it as a few-shot meta-learning problem where the goal is to find a model that captures the common structure shared across different robotic platforms.
We experimentally evaluate our framework on a simulated reaching and a real-robot picking task using 400 simulated robots.
arXiv Detail & Related papers (2021-03-05T14:16:20Z) - Large Scale Distributed Collaborative Unlabeled Motion Planning with
Graph Policy Gradients [122.85280150421175]
We present a learning method to solve the unlabelled motion problem with motion constraints and space constraints in 2D space for a large number of robots.
We employ a graph neural network (GNN) to parameterize policies for the robots.
arXiv Detail & Related papers (2021-02-11T21:57:43Z) - Autonomous Navigation in Dynamic Environments: Deep Learning-Based
Approach [0.0]
This thesis studies different deep learning-based approaches, highlighting the advantages and disadvantages of each scheme.
One of the deep learning methods based on convolutional neural network (CNN) is realized by software implementations.
We propose a low-cost approach, for indoor applications such as restaurants, museums, etc, on the base of using a monocular camera instead of a laser scanner.
arXiv Detail & Related papers (2021-02-03T23:20:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.