Susceptibility Formulation of Density Matrix Perturbation Theory
- URL: http://arxiv.org/abs/2409.17033v1
- Date: Wed, 25 Sep 2024 15:34:21 GMT
- Title: Susceptibility Formulation of Density Matrix Perturbation Theory
- Authors: Anders M. N. Niklasson, Adela Habib, Joshua Finkelstein, Emanuel H. Rubensson,
- Abstract summary: Density matrix perturbation theory provides a computationally efficient framework for time-independent response calculations.
We show an alternative, it dual formulation, where we instead calculate the static susceptibility of an observable.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Density matrix perturbation theory based on recursive Fermi-operator expansions provides a computationally efficient framework for time-independent response calculations in quantum chemistry and materials science. From a perturbation in the Hamiltonian we can calculate the first-order perturbation in the density matrix, which then gives us the linear response in the expectation values for some chosen set of observables. Here we present an alternative, {\it dual} formulation, where we instead calculate the static susceptibility of an observable, which then gives us the linear response in the expectation values for any number of different Hamiltonian perturbations. We show how the calculation of the susceptibility can be performed with the same expansion schemes used in recursive density matrix perturbation theory, including generalizations to fractional occupation numbers and self-consistent linear response calculations, i.e. similar to density functional perturbation theory. As with recursive density matrix perturbation theory, the dual susceptibility formulation is well suited for numerically thresholded sparse matrix algebra, which has linear scaling complexity for sufficiently large sparse systems. Similarly, the recursive computation of the susceptibility also seamlessly integrates with the computational framework of deep neural networks used in artificial intelligence (AI) applications. This integration enables the calculation of quantum response properties that can leverage cutting-edge AI-hardware, such as Nvidia Tensor cores or Google Tensor Processing Units. We demonstrate performance for recursive susceptibility calculations using Nvidia Graphics Processing Units and Tensor cores.
Related papers
- Simulating NMR Spectra with a Quantum Computer [49.1574468325115]
This paper provides a formalization of the complete procedure of the simulation of a spin system's NMR spectrum.
We also explain how to diagonalize the Hamiltonian matrix with a quantum computer, thus enhancing the overall process's performance.
arXiv Detail & Related papers (2024-10-28T08:43:40Z) - Efficient Representation of Gaussian Fermionic Pure States in Non-Computational Bases [0.0]
This paper introduces an innovative approach for representing Gaussian fermionic states, pivotal in quantum spin systems and fermionic models.
We focus on transitioning these states from the conventional computational (sigmaz) basis to more complex bases, such as (phi, fracpi2, alpha)
We present a novel algorithm that not only simplifies the basis transformation but also reduces computational complexity.
arXiv Detail & Related papers (2024-03-05T19:43:33Z) - Quantum tomography of helicity states for general scattering processes [55.2480439325792]
Quantum tomography has become an indispensable tool in order to compute the density matrix $rho$ of quantum systems in Physics.
We present the theoretical framework for reconstructing the helicity quantum initial state of a general scattering process.
arXiv Detail & Related papers (2023-10-16T21:23:42Z) - Implementation of the Density-functional Theory on Quantum Computers
with Linear Scaling with respect to the Number of Atoms [1.4502611532302039]
Density-functional theory (DFT) has revolutionized computer simulations in chemistry and material science.
A faithful implementation of the theory requires self-consistent calculations.
This article presents a quantum algorithm that has a linear scaling with respect to the number of atoms.
arXiv Detail & Related papers (2023-07-13T21:17:58Z) - Vectorization of the density matrix and quantum simulation of the von
Neumann equation of time-dependent Hamiltonians [65.268245109828]
We develop a general framework to linearize the von-Neumann equation rendering it in a suitable form for quantum simulations.
We show that one of these linearizations of the von-Neumann equation corresponds to the standard case in which the state vector becomes the column stacked elements of the density matrix.
A quantum algorithm to simulate the dynamics of the density matrix is proposed.
arXiv Detail & Related papers (2023-06-14T23:08:51Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Quantum perturbation theory using Tensor cores and a deep neural network [0.0]
Time-independent quantum response calculations are performed using floating cores.
We demonstrate a peak performance of almost 200 Tflops using the cores of two Nvidia A100 GPUs.
arXiv Detail & Related papers (2022-03-17T21:24:10Z) - Dynamics simulation and numerical analysis of arbitrary time-dependent
$\mathcal{PT}$-symmetric system based on density operators [1.4160075657031783]
How to simulate $mathcalPT$-symmetric system in traditional quantum mechanical system has not only fundamental theoretical significance but also practical value.
We propose a dynamics simulation scheme of arbitrary time-dependent system based on density operators.
We show the depolarizing (Dep) noise is the most fatal and should be avoided as much as possible.
arXiv Detail & Related papers (2022-03-16T17:41:19Z) - Contour Integral-based Quantum Algorithm for Estimating Matrix
Eigenvalue Density [5.962184741057505]
We propose a quantum algorithm for computing the eigenvalue density in a given interval.
The eigenvalue count in a given interval is derived as the probability of observing a bit pattern in a fraction of the qubits of the output state.
arXiv Detail & Related papers (2021-12-10T08:58:44Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.