Determinant Estimation under Memory Constraints and Neural Scaling Laws
- URL: http://arxiv.org/abs/2503.04424v1
- Date: Thu, 06 Mar 2025 13:32:13 GMT
- Title: Determinant Estimation under Memory Constraints and Neural Scaling Laws
- Authors: Siavash Ameli, Chris van der Heide, Liam Hodgkinson, Fred Roosta, Michael W. Mahoney,
- Abstract summary: We derive a novel hierarchical algorithm for large-scale log-determinant calculation in memory-constrained settings.<n>We show that the ratio of pseudo-determinants satisfies a power-law relationship, allowing us to derive corresponding scaling laws.<n>This enables accurate estimation of NTK log-determinants from a tiny fraction of the full dataset.
- Score: 48.68885778257016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Calculating or accurately estimating log-determinants of large positive semi-definite matrices is of fundamental importance in many machine learning tasks. While its cubic computational complexity can already be prohibitive, in modern applications, even storing the matrices themselves can pose a memory bottleneck. To address this, we derive a novel hierarchical algorithm based on block-wise computation of the LDL decomposition for large-scale log-determinant calculation in memory-constrained settings. In extreme cases where matrices are highly ill-conditioned, accurately computing the full matrix itself may be infeasible. This is particularly relevant when considering kernel matrices at scale, including the empirical Neural Tangent Kernel (NTK) of neural networks trained on large datasets. Under the assumption of neural scaling laws in the test error, we show that the ratio of pseudo-determinants satisfies a power-law relationship, allowing us to derive corresponding scaling laws. This enables accurate estimation of NTK log-determinants from a tiny fraction of the full dataset; in our experiments, this results in a $\sim$100,000$\times$ speedup with improved accuracy over competing approximations. Using these techniques, we successfully estimate log-determinants for dense matrices of extreme sizes, which were previously deemed intractable and inaccessible due to their enormous scale and computational demands.
Related papers
- Large Language Model Evaluation via Matrix Nuclear-Norm [11.878496378814045]
We introduce the Matrix Nuclear-Norm, which serves as a metric to quantify the data compression proficiency of large language models (LLMs)
By employing the ( L_1,2text-norm ) to further approximate the nuclear norm, we can effectively assess the model's information compression capabilities.
The Matrix Nuclear-Norm achieves speeds 8 to 24 times faster than Matrix Entropy for the CEREBRAS-GPT model as sizes increase from 111M to 6.7B.
arXiv Detail & Related papers (2024-10-14T16:15:57Z) - Large-Scale OD Matrix Estimation with A Deep Learning Method [70.78575952309023]
The proposed method integrates deep learning and numerical optimization algorithms to infer matrix structure and guide numerical optimization.
We conducted tests to demonstrate the good generalization performance of our method on a large-scale synthetic dataset.
arXiv Detail & Related papers (2023-10-09T14:30:06Z) - Randomized Polar Codes for Anytime Distributed Machine Learning [66.46612460837147]
We present a novel distributed computing framework that is robust to slow compute nodes, and is capable of both approximate and exact computation of linear operations.
We propose a sequential decoding algorithm designed to handle real valued data while maintaining low computational complexity for recovery.
We demonstrate the potential applications of this framework in various contexts, such as large-scale matrix multiplication and black-box optimization.
arXiv Detail & Related papers (2023-09-01T18:02:04Z) - Large-scale gradient-based training of Mixtures of Factor Analyzers [67.21722742907981]
This article contributes both a theoretical analysis as well as a new method for efficient high-dimensional training by gradient descent.
We prove that MFA training and inference/sampling can be performed based on precision matrices, which does not require matrix inversions after training is completed.
Besides the theoretical analysis and matrices, we apply MFA to typical image datasets such as SVHN and MNIST, and demonstrate the ability to perform sample generation and outlier detection.
arXiv Detail & Related papers (2023-08-26T06:12:33Z) - Linearized Wasserstein dimensionality reduction with approximation
guarantees [65.16758672591365]
LOT Wassmap is a computationally feasible algorithm to uncover low-dimensional structures in the Wasserstein space.
We show that LOT Wassmap attains correct embeddings and that the quality improves with increased sample size.
We also show how LOT Wassmap significantly reduces the computational cost when compared to algorithms that depend on pairwise distance computations.
arXiv Detail & Related papers (2023-02-14T22:12:16Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
We introduce a deep learning-based corrector called Neural Vector (NeurVec)
NeurVec can compensate for integration errors and enable larger time step sizes in simulations.
Our experiments on a variety of complex dynamical system benchmarks demonstrate that NeurVec exhibits remarkable generalization capability.
arXiv Detail & Related papers (2022-08-07T09:02:18Z) - Semi-Parametric Inducing Point Networks and Neural Processes [15.948270454686197]
Semi-parametric inducing point networks (SPIN) can query the training set at inference time in a compute-efficient manner.
SPIN attains linear complexity via a cross-attention mechanism between datapoints inspired by inducing point methods.
In our experiments, SPIN reduces memory requirements, improves accuracy across a range of meta-learning tasks, and improves state-of-the-art performance on an important practical problem, genotype imputation.
arXiv Detail & Related papers (2022-05-24T01:42:46Z) - Lassoed Tree Boosting [53.56229983630983]
We prove that a gradient boosted tree algorithm with early stopping faster than $n-1/4$ L2 convergence in the large nonparametric space of cadlag functions of bounded sectional variation.
Our convergence proofs are based on a novel, general theorem on early stopping with empirical loss minimizers of nested Donsker classes.
arXiv Detail & Related papers (2022-05-22T00:34:41Z) - Statistically Meaningful Approximation: a Case Study on Approximating
Turing Machines with Transformers [50.85524803885483]
This work proposes a formal definition of statistically meaningful (SM) approximation which requires the approximating network to exhibit good statistical learnability.
We study SM approximation for two function classes: circuits and Turing machines.
arXiv Detail & Related papers (2021-07-28T04:28:55Z) - The Fast Kernel Transform [21.001203328543006]
We propose the Fast Kernel Transform (FKT), a general algorithm to compute matrix-vector multiplications for datasets in moderate dimensions with quasilinear complexity.
The FKT is easily applied to a broad class of kernels, including Gaussian, Matern, and Rational Quadratic covariance functions and physically motivated Green's functions.
We illustrate the efficacy and versatility of the FKT by providing timing and accuracy benchmarks and by applying it to scale the neighborhood embedding (t-SNE) and Gaussian processes to large real-world data sets.
arXiv Detail & Related papers (2021-06-08T16:15:47Z) - The Power of Log-Sum-Exp: Sequential Density Ratio Matrix Estimation for
Speed-Accuracy Optimization [0.0]
We propose a model for multiclass classification of time series to make a prediction as early and as accurate as possible.
Our overall architecture for early classification, MSPRT-TANDEM, statistically significantly outperforms baseline models on four datasets.
arXiv Detail & Related papers (2021-05-28T07:21:58Z) - Berrut Approximated Coded Computing: Straggler Resistance Beyond
Polynomial Computing [34.69732430310801]
We propose Berrut Approximated Coded Computing (BACC) as an alternative approach to deal with stragglers effect.
BACC is proven to be numerically stable with low computational complexity.
In particular, BACC is used to train a deep neural network on a cluster of servers.
arXiv Detail & Related papers (2020-09-17T14:23:38Z) - Relative gradient optimization of the Jacobian term in unsupervised deep
learning [9.385902422987677]
Learning expressive probabilistic models correctly describing the data is a ubiquitous problem in machine learning.
Deep density models have been widely used for this task, but their maximum likelihood based training requires estimating the log-determinant of the Jacobian.
We propose a new approach for exact training of such neural networks.
arXiv Detail & Related papers (2020-06-26T16:41:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.