論文の概要: Parameter-efficient Bayesian Neural Networks for Uncertainty-aware Depth Estimation
- arxiv url: http://arxiv.org/abs/2409.17085v1
- Date: Wed, 25 Sep 2024 16:49:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-27 02:54:47.425572
- Title: Parameter-efficient Bayesian Neural Networks for Uncertainty-aware Depth Estimation
- Title(参考訳): 不確実性を考慮した深さ推定のためのパラメータ効率ベイズニューラルネットワーク
- Authors: Richard D. Paul, Alessio Quercia, Vincent Fortuin, Katharina Nöh, Hanno Scharr,
- Abstract要約: 大規模変換器を用いた視覚モデルにおける部分空間ベイズ推定のためのPEFT法の適合性について検討する。
実のところ、BitFit、DiffFit、LoRA、CoLoRAはLoRAにインスパイアされた新しいPEFT法であり、ベイジアン推論はより堅牢で信頼性の高い予測性能を実現する。
- 参考スコア(独自算出の注目度): 6.750319758787498
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: State-of-the-art computer vision tasks, like monocular depth estimation (MDE), rely heavily on large, modern Transformer-based architectures. However, their application in safety-critical domains demands reliable predictive performance and uncertainty quantification. While Bayesian neural networks provide a conceptually simple approach to serve those requirements, they suffer from the high dimensionality of the parameter space. Parameter-efficient fine-tuning (PEFT) methods, in particular low-rank adaptations (LoRA), have emerged as a popular strategy for adapting large-scale models to down-stream tasks by performing parameter inference on lower-dimensional subspaces. In this work, we investigate the suitability of PEFT methods for subspace Bayesian inference in large-scale Transformer-based vision models. We show that, indeed, combining BitFit, DiffFit, LoRA, and CoLoRA, a novel LoRA-inspired PEFT method, with Bayesian inference enables more robust and reliable predictive performance in MDE.
- Abstract(参考訳): モノクル深度推定(MDE)のような最先端のコンピュータビジョンタスクは、大規模なトランスフォーマーベースのアーキテクチャに大きく依存している。
しかし、安全クリティカル領域におけるそれらの応用は、信頼性の高い予測性能と不確実な定量化を要求する。
ベイズニューラルネットワークはこれらの要件を満たすための概念的にシンプルなアプローチを提供するが、パラメータ空間の高次元性に悩まされる。
パラメータ効率のよい微調整(PEFT)手法,特にローランク適応(LoRA)は,低次元部分空間上でパラメータ推論を行うことで,大規模モデルを下流タスクに適用するための一般的な戦略として登場した。
本研究では,大規模トランスフォーマーを用いた視覚モデルにおける部分空間ベイズ推定のためのPEFT手法の適合性について検討する。
実のところ、BitFit、DiffFit、LoRA、CoLoRAはLoRAにインスパイアされた新しいPEFT法であり、ベイジアン推論はMDEにおいてより堅牢で信頼性の高い予測性能を実現する。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Parameter-Efficient Fine-Tuning in Large Models: A Survey of Methodologies [17.904502959675337]
大規模なモデルでは、運用には相当な計算資源とGPUメモリが必要である。
PEFT (Efficient Fine-Tuning) は、様々な下流タスクに適合する大規模な事前学習モデルのパラメータを効率的に調整することで、実用的なソリューションを提供する。
本稿では,PEFTの予備知識,各種PEFTアルゴリズムの基本的な考え方と原理,PEFTの適用,今後の研究方向性について紹介する。
論文 参考訳(メタデータ) (2024-10-24T13:58:59Z) - Adaptive Anomaly Detection in Network Flows with Low-Rank Tensor Decompositions and Deep Unrolling [9.20186865054847]
異常検出(AD)は、将来の通信システムのレジリエンスを確保するための重要な要素として、ますます認識されている。
この研究は、不完全測定を用いたネットワークフローにおけるADについて考察する。
本稿では,正規化モデル適合性に基づくブロック帰属凸近似アルゴリズムを提案する。
ベイズ的アプローチに触発されて、我々はモデルアーキテクチャを拡張し、フローごとのオンライン適応とステップごとの統計処理を行う。
論文 参考訳(メタデータ) (2024-09-17T19:59:57Z) - Unleashing the Power of Task-Specific Directions in Parameter Efficient Fine-tuning [65.31677646659895]
本稿では,タスク固有の方向性 (TSD) の概念に着目し,大規模モデルを事前学習状態からPEFTにおけるタスク固有の拡張へ移行させる。
本稿では,微調整過程におけるTSDの影響を最大化し,目標タスクにおけるモデル性能を向上させることを目的とした新しいアプローチであるLoRA-Dashを紹介する。
論文 参考訳(メタデータ) (2024-09-02T08:10:51Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - MoE-FFD: Mixture of Experts for Generalized and Parameter-Efficient Face Forgery Detection [54.545054873239295]
ディープフェイクは、最近、国民の間で重大な信頼問題とセキュリティ上の懸念を提起した。
ViT法はトランスの表現性を生かし,優れた検出性能を実現する。
この研究は、汎用的でパラメータ効率のよいViTベースのアプローチであるFace Forgery Detection (MoE-FFD)のためのMixture-of-Expertsモジュールを導入する。
論文 参考訳(メタデータ) (2024-04-12T13:02:08Z) - Do deep neural networks utilize the weight space efficiently? [2.9914612342004503]
TransformersやConvolutional Neural Networks(CNN)といったディープラーニングモデルは、さまざまなドメインに革命をもたらしたが、パラメータ集約的な自然ハマーをリソース制約された設定に配置する。
重み行列の列空間と行空間を利用する新しい概念を導入し、性能を損なうことなくモデルパラメータを大幅に削減する。
私たちのアプローチはBottleneck層とAttention層の両方に適用され、パラメータを効果的に半分にします。
論文 参考訳(メタデータ) (2024-01-26T21:51:49Z) - Parameter Efficient Fine-tuning via Cross Block Orchestration for Segment Anything Model [81.55141188169621]
PEFTにクロスブロックオーケストレーション機構を組み、SAM(Segment Anything Model)の様々な下流シナリオへの適応を可能にする。
本稿では,超複素層から重みが生じる線形射影ヘッドを導入するブロック内拡張モジュールを提案する。
提案手法は,約1Kのパラメータのみを付加した新規シナリオにおいて,セグメンテーション性能を大幅に向上させる。
論文 参考訳(メタデータ) (2023-11-28T11:23:34Z) - Boosting Inference Efficiency: Unleashing the Power of Parameter-Shared
Pre-trained Language Models [109.06052781040916]
本稿ではパラメータ共有言語モデルの推論効率を向上させる手法を提案する。
また、完全あるいは部分的に共有されたモデルにつながる単純な事前学習手法を提案する。
その結果,本手法が自己回帰的および自己符号化的PLMに与える影響が示された。
論文 参考訳(メタデータ) (2023-10-19T15:13:58Z) - A Metaheuristic for Amortized Search in High-Dimensional Parameter
Spaces [0.0]
本稿では,特徴インフォームド変換から次元還元を実現するメタヒューリスティックを提案する。
DR-FFITは、高次元空間における勾配自由パラメータ探索を容易にする効率的なサンプリング戦略を実装している。
実験データから,DR-FFITは,確立したメタヒューリスティックスに対するランダム検索とシミュレート・アニーリングの性能を向上させることが示された。
論文 参考訳(メタデータ) (2023-09-28T14:25:14Z) - Probabilistic MIMO U-Net: Efficient and Accurate Uncertainty Estimation
for Pixel-wise Regression [1.4528189330418977]
機械学習における不確実性推定は、予測モデルの信頼性と解釈可能性を高めるための最重要課題である。
画素ワイド回帰タスクに対するMIMO(Multiple-Input Multiple-Output)フレームワークの適応について述べる。
論文 参考訳(メタデータ) (2023-08-14T22:08:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。