論文の概要: A Metaheuristic for Amortized Search in High-Dimensional Parameter
Spaces
- arxiv url: http://arxiv.org/abs/2309.16465v1
- Date: Thu, 28 Sep 2023 14:25:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-29 14:06:29.186067
- Title: A Metaheuristic for Amortized Search in High-Dimensional Parameter
Spaces
- Title(参考訳): 高次元パラメータ空間における補正探索のためのメタヒューリスティック
- Authors: Dominic Boutet and Sylvain Baillet (Montreal Neurological Institute,
McGill University, Montreal QC, Canada)
- Abstract要約: 本稿では,特徴インフォームド変換から次元還元を実現するメタヒューリスティックを提案する。
DR-FFITは、高次元空間における勾配自由パラメータ探索を容易にする効率的なサンプリング戦略を実装している。
実験データから,DR-FFITは,確立したメタヒューリスティックスに対するランダム検索とシミュレート・アニーリングの性能を向上させることが示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parameter inference for dynamical models of (bio)physical systems remains a
challenging problem. Intractable gradients, high-dimensional spaces, and
non-linear model functions are typically problematic without large
computational budgets. A recent body of work in that area has focused on
Bayesian inference methods, which consider parameters under their statistical
distributions and therefore, do not derive point estimates of optimal parameter
values. Here we propose a new metaheuristic that drives dimensionality
reductions from feature-informed transformations (DR-FFIT) to address these
bottlenecks. DR-FFIT implements an efficient sampling strategy that facilitates
a gradient-free parameter search in high-dimensional spaces. We use artificial
neural networks to obtain differentiable proxies for the model's features of
interest. The resulting gradients enable the estimation of a local active
subspace of the model within a defined sampling region. This approach enables
efficient dimensionality reductions of highly non-linear search spaces at a low
computational cost. Our test data show that DR-FFIT boosts the performances of
random-search and simulated-annealing against well-established metaheuristics,
and improves the goodness-of-fit of the model, all within contained run-time
costs.
- Abstract(参考訳): 生体物理系の力学モデルに対するパラメータ推定は依然として難しい問題である。
難解勾配、高次元空間、非線形モデル関数は、一般に大きな計算予算なしで問題となる。
この領域における最近の研究は、その統計分布の下でパラメータを考慮し、最適なパラメータ値の点推定を導出しないベイズ推定法に焦点を当てている。
本稿では,これらのボトルネックに対処するため,特徴量変換(DR-FFIT)から次元的縮小を推し進めるメタヒューリスティックを提案する。
DR-FFITは、高次元空間における勾配自由パラメータ探索を容易にする効率的なサンプリング戦略を実装している。
人工ニューラルネットワークを用いて、モデルの興味のある特徴を識別可能なプロキシを得る。
結果として得られる勾配は、定義されたサンプリング領域内のモデルの局所活性部分空間を推定することができる。
このアプローチは、計算コストの低い高非線形探索空間の高次元化を可能にする。
実験データから, dr-ffitは, 確立されたメタヒューリスティックスに対するランダム探索およびシミュレーション・アニーリングの性能を向上し, すべて実行時のコスト内において, モデルの適合性を向上させることが示された。
関連論文リスト
- Provably Efficient Algorithm for Nonstationary Low-Rank MDPs [48.92657638730582]
我々は,非定常RLを,遷移カーネルと報酬の両方が時間とともに変化するような,エピソードな低ランクMDPで調査する最初の試みを行っている。
本稿では,パラメータ依存型ポリシ最適化アルゴリズムである Portal を提案し,パラメータフリー版である Ada-Portal の Portal をさらに改良する。
両アルゴリズムとも,非定常性が著しく大きくない限り, Portal と Ada-PortAL はサンプリング効率が良く,サンプリング複雑性を伴う平均的動的準最適ギャップを任意に小さく得ることを示す。
論文 参考訳(メタデータ) (2023-08-10T09:52:44Z) - On stable wrapper-based parameter selection method for efficient
ANN-based data-driven modeling of turbulent flows [2.0731505001992323]
本研究の目的は,ニューラルネットワーク(ANN)とラッパー手法に基づくモデリングの削減手法を解析・開発することである。
その結果, 偏微分損失を最小化するための勾配に基づくサブセット選択は, 整合性向上をもたらすことがわかった。
縮小乱流Prendtl数モデルでは、勾配に基づくサブセット選択は、他の手法よりも検証ケースでの予測を改善する。
論文 参考訳(メタデータ) (2023-08-04T08:26:56Z) - Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels [78.6096486885658]
線形化されたラプラス近似に下界を導入する。
これらの境界は漸進的な最適化が可能であり、推定精度と計算複雑性とのトレードオフを可能にする。
論文 参考訳(メタデータ) (2023-06-06T19:02:57Z) - Score-based Diffusion Models in Function Space [140.792362459734]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
本稿では,関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)という,数学的に厳密なフレームワークを提案する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - An iterative multi-fidelity approach for model order reduction of
multi-dimensional input parametric PDE systems [0.0]
多次元入力パラメトリック空間を用いた大規模PDEシステムの縮小のためのサンプリングパラメトリック戦略を提案する。
これはパラメトリック空間全体の低忠実度モデルを効率的なサンプリング戦略を用いてサンプリングポイントに利用することで達成される。
提案手法は,低忠実度モデルを用いてソリューションデータベースを同化するため,オフライン段階での計算コストを大幅に削減する。
論文 参考訳(メタデータ) (2023-01-23T15:25:58Z) - An Accelerated Doubly Stochastic Gradient Method with Faster Explicit
Model Identification [97.28167655721766]
本稿では、分散正規化損失最小化問題に対する2倍加速勾配降下法(ADSGD)を提案する。
まず、ADSGDが線形収束率を達成でき、全体的な計算複雑性を低減できることを示す。
論文 参考訳(メタデータ) (2022-08-11T22:27:22Z) - Learning High-Dimensional Distributions with Latent Neural Fokker-Planck
Kernels [67.81799703916563]
低次元潜在空間におけるフォッカー・プランク方程式の解法として問題を定式化する新しい手法を導入する。
提案モデルでは,潜在分散モーフィング,ジェネレータ,パラメータ化Fokker-Planckカーネル関数からなる。
論文 参考訳(メタデータ) (2021-05-10T17:42:01Z) - Fast Distributionally Robust Learning with Variance Reduced Min-Max
Optimization [85.84019017587477]
分散的ロバストな教師付き学習は、現実世界のアプリケーションのための信頼性の高い機械学習システムを構築するための重要なパラダイムとして登場している。
Wasserstein DRSLを解くための既存のアルゴリズムは、複雑なサブプロブレムを解くか、勾配を利用するのに失敗する。
我々はmin-max最適化のレンズを通してwaserstein drslを再検討し、スケーラブルで効率的に実装可能な超勾配アルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-04-27T16:56:09Z) - High-dimensional Bayesian Optimization of Personalized Cardiac Model
Parameters via an Embedded Generative Model [7.286540513944084]
ベイズ最適化の目的関数に生成的変分オートエンコーダ(VAE)を組み込む新しい概念を提案する。
生成コードに関するVAE符号化された知識は、探索空間の探索を導くために使用される。
本発明の方法は、心臓電気生理学的モデルにおける組織興奮性の推定に応用される。
論文 参考訳(メタデータ) (2020-05-15T22:14:16Z) - Optimal statistical inference in the presence of systematic
uncertainties using neural network optimization based on binned Poisson
likelihoods with nuisance parameters [0.0]
本研究は,特徴工学のためのニューラルネットワークによる次元削減を構築するための新しい戦略を提案する。
提案手法は, 最適に近い利害関係のパラメータを推定する方法について議論する。
論文 参考訳(メタデータ) (2020-03-16T13:27:18Z) - Misspecification-robust likelihood-free inference in high dimensions [13.934999364767918]
本稿では,ベイズ最適化に基づく近似離散関数の確率的手法による拡張を提案する。
提案手法は,高次元パラメータ空間に対する計算スケーラビリティを,各パラメータの別個の取得関数と相違点を用いて達成する。
本手法は,100次元空間における標準例による計算効率のよい推論を成功させ,既存のモジュール化ABC法と比較した。
論文 参考訳(メタデータ) (2020-02-21T16:06:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。