Locally Regularized Sparse Graph by Fast Proximal Gradient Descent
- URL: http://arxiv.org/abs/2409.17090v1
- Date: Wed, 25 Sep 2024 16:57:47 GMT
- Title: Locally Regularized Sparse Graph by Fast Proximal Gradient Descent
- Authors: Dongfang Sun, Yingzhen Yang,
- Abstract summary: We propose a novel Regularized Sparse Graph abbreviated SRSG.
Sparse graphs have been shown to be effective in clustering high-dimensional data.
We show that SRSG is superior to other clustering methods.
- Score: 6.882546996728011
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sparse graphs built by sparse representation has been demonstrated to be effective in clustering high-dimensional data. Albeit the compelling empirical performance, the vanilla sparse graph ignores the geometric information of the data by performing sparse representation for each datum separately. In order to obtain a sparse graph aligned with the local geometric structure of data, we propose a novel Support Regularized Sparse Graph, abbreviated as SRSG, for data clustering. SRSG encourages local smoothness on the neighborhoods of nearby data points by a well-defined support regularization term. We propose a fast proximal gradient descent method to solve the non-convex optimization problem of SRSG with the convergence matching the Nesterov's optimal convergence rate of first-order methods on smooth and convex objective function with Lipschitz continuous gradient. Extensive experimental results on various real data sets demonstrate the superiority of SRSG over other competing clustering methods.
Related papers
- Fast and Scalable Semi-Supervised Learning for Multi-View Subspace Clustering [13.638434337947302]
FSSMSC is a novel solution to the high computational complexity commonly found in existing approaches.
The method generates a consensus anchor graph across all views, representing each data point as a sparse linear combination of chosen landmarks.
The effectiveness and efficiency of FSSMSC are validated through extensive experiments on multiple benchmark datasets of varying scales.
arXiv Detail & Related papers (2024-08-11T06:54:00Z) - MeanCut: A Greedy-Optimized Graph Clustering via Path-based Similarity
and Degree Descent Criterion [0.6906005491572401]
spectral clustering is popular and attractive due to the remarkable performance, easy implementation, and strong adaptability.
We propose MeanCut as the objective function and greedily optimize it in degree descending order for a nondestructive graph partition.
The validity of our algorithm is demonstrated by testifying on real-world benchmarks and application of face recognition.
arXiv Detail & Related papers (2023-12-07T06:19:39Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
The reliability of graph embeddings depends on how much the geometry of the continuous space matches the graph structure.
We introduce a new class of manifold, named soft manifold, that can solve this situation.
Using soft manifold for graph embedding, we can provide continuous spaces to pursue any task in data analysis over complex datasets.
arXiv Detail & Related papers (2023-11-29T12:48:33Z) - Optimality of Message-Passing Architectures for Sparse Graphs [13.96547777184641]
We study the node classification problem on feature-decorated graphs in the sparse setting, i.e., when the expected degree of a node is $O(1)$ in the number of nodes.
We introduce a notion of Bayes optimality for node classification tasks, called local Bayes optimality.
We show that the optimal message-passing architecture interpolates between a standard in the regime of low graph signal and a typical in the regime of high graph signal.
arXiv Detail & Related papers (2023-05-17T17:31:20Z) - Graph Signal Sampling for Inductive One-Bit Matrix Completion: a
Closed-form Solution [112.3443939502313]
We propose a unified graph signal sampling framework which enjoys the benefits of graph signal analysis and processing.
The key idea is to transform each user's ratings on the items to a function (signal) on the vertices of an item-item graph.
For the online setting, we develop a Bayesian extension, i.e., BGS-IMC which considers continuous random Gaussian noise in the graph Fourier domain.
arXiv Detail & Related papers (2023-02-08T08:17:43Z) - Tackling Data Heterogeneity: A New Unified Framework for Decentralized
SGD with Sample-induced Topology [6.6682038218782065]
We develop a general framework unifying several gradient-based optimization methods for empirical risk minimization problems.
We provide a unified perspective for variance-reduction (VR) and gradient-tracking (GT) methods such as SAGA, Local-SVRG and GT-SAGA.
The rate results reveal that VR and GT methods can effectively eliminate data within and across devices, respectively, enabling the exact convergence of the algorithm to the optimal solution.
arXiv Detail & Related papers (2022-07-08T07:50:08Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
Motivated by the problem of online correlation analysis, we propose the emphStochastic Scaled-Gradient Descent (SSD) algorithm.
We bring these ideas together in an application to online correlation analysis, deriving for the first time an optimal one-time-scale algorithm with an explicit rate of local convergence to normality.
arXiv Detail & Related papers (2021-12-29T18:46:52Z) - Robust Training in High Dimensions via Block Coordinate Geometric Median
Descent [69.47594803719333]
Geometric median (textGm) is a classical method in statistics for achieving a robust estimation of the uncorrupted data.
In this paper, we show that by that by applying textscGm to only a chosen block of coordinates at a time, one can retain a breakdown point of 0.5 judiciously for smooth nontext problems.
arXiv Detail & Related papers (2021-06-16T15:55:50Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
This paper proposes a novel unsupervised approach called spatial-spectral clustering with anchor graph (SSCAG) for HSI data clustering.
The proposed SSCAG is competitive against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-24T08:09:27Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
This paper proposes a novel spatial-spectral HSI classification method via multiple random anchor graphs ensemble learning (RAGE)
Firstly, the local binary pattern is adopted to extract the more descriptive features on each selected band, which preserves local structures and subtle changes of a region.
Secondly, the adaptive neighbors assignment is introduced in the construction of anchor graph, to reduce the computational complexity.
arXiv Detail & Related papers (2021-03-25T09:31:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.