PACE: marrying generalization in PArameter-efficient fine-tuning with Consistency rEgularization
- URL: http://arxiv.org/abs/2409.17137v3
- Date: Sat, 2 Nov 2024 03:27:12 GMT
- Title: PACE: marrying generalization in PArameter-efficient fine-tuning with Consistency rEgularization
- Authors: Yao Ni, Shan Zhang, Piotr Koniusz,
- Abstract summary: PACE is a generalization of PArameter-efficient fine-tuning with Consistency rEgularization.
We show that PACE implicitly regularizes gradients for enhanced generalization, but also implicitly aligns the fine-tuned and pre-trained models to retain knowledge.
PACE outperforms existing PEFT methods in four visual adaptation tasks: VTAB-1k, FGVC, few-shot learning and domain adaptation.
- Score: 35.922096876707975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parameter-Efficient Fine-Tuning (PEFT) effectively adapts pre-trained vision transformers to downstream tasks. However, the optimization for tasks performance often comes at the cost of generalizability in fine-tuned models. To address this issue, we theoretically connect smaller weight gradient norms during training and larger datasets to the improved model generalization. Motivated by this connection, we propose reducing gradient norms for enhanced generalization and aligning fine-tuned model with the pre-trained counterpart to retain knowledge from large-scale pre-training data. Yet, naive alignment does not guarantee gradient reduction and can potentially cause gradient explosion, complicating efforts to manage gradients. To address such issues, we propose PACE, marrying generalization of PArameter-efficient fine-tuning with Consistency rEgularization. We perturb features learned from the adapter with the multiplicative noise and ensure the fine-tuned model remains consistent for same sample under different perturbations. Theoretical analysis shows that PACE not only implicitly regularizes gradients for enhanced generalization, but also implicitly aligns the fine-tuned and pre-trained models to retain knowledge. Experimental evidence supports our theories. PACE outperforms existing PEFT methods in four visual adaptation tasks: VTAB-1k, FGVC, few-shot learning and domain adaptation. Code will be available at https://github.com/MaxwellYaoNi/PACE
Related papers
- HG-Adapter: Improving Pre-Trained Heterogeneous Graph Neural Networks with Dual Adapters [53.97380482341493]
"pre-train, prompt-tuning" has demonstrated impressive performance for tuning pre-trained heterogeneous graph neural networks (HGNNs)
We propose a unified framework that combines two new adapters with potential labeled data extension to improve the generalization of pre-trained HGNN models.
arXiv Detail & Related papers (2024-11-02T06:43:54Z) - Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFT is a fine-tuning strategy that freezes the majority of the model's parameters, focusing adjustments on newly introduced prompts and adapters.
Our experiments show that Forecast-PEFT outperforms traditional full fine-tuning methods in motion prediction tasks.
Forecast-FT further improves prediction performance, evidencing up to a 9.6% enhancement over conventional baseline methods.
arXiv Detail & Related papers (2024-07-28T19:18:59Z) - Learn to Preserve and Diversify: Parameter-Efficient Group with Orthogonal Regularization for Domain Generalization [28.977757627384165]
Domain Domain (DG) aims to avoid the performance degradation of the model when the distribution shift between the limited training data and unseen test data occurs.
Recently, foundation models with enormous parameters have been pre-trained with huge datasets, demonstrating strong generalization ability.
Our framework achieves SOTA performance on five DG benchmarks, while only requiring training a small number of parameters without adding additional testing cost.
arXiv Detail & Related papers (2024-07-21T07:50:49Z) - Gradient Projection For Continual Parameter-Efficient Tuning [42.800411328615894]
We reformulate Adapter, LoRA, Prefix-tuning, and Prompt-tuning from the perspective of gradient projection.
We show that the condition for the gradient can effectively resist forgetting even for large-scale models.
We extensively evaluate our method with different backbones, including ViT and CLIP, on diverse datasets.
arXiv Detail & Related papers (2024-05-22T06:33:48Z) - Sparse is Enough in Fine-tuning Pre-trained Large Language Models [98.46493578509039]
We propose a gradient-based sparse fine-tuning algorithm, named Sparse Increment Fine-Tuning (SIFT)
We validate its effectiveness on a range of tasks including the GLUE Benchmark and Instruction-tuning.
arXiv Detail & Related papers (2023-12-19T06:06:30Z) - Winner-Take-All Column Row Sampling for Memory Efficient Adaptation of Language Model [89.8764435351222]
We propose a new family of unbiased estimators called WTA-CRS, for matrix production with reduced variance.
Our work provides both theoretical and experimental evidence that, in the context of tuning transformers, our proposed estimators exhibit lower variance compared to existing ones.
arXiv Detail & Related papers (2023-05-24T15:52:08Z) - Orthogonal SVD Covariance Conditioning and Latent Disentanglement [65.67315418971688]
Inserting an SVD meta-layer into neural networks is prone to make the covariance ill-conditioned.
We propose Nearest Orthogonal Gradient (NOG) and Optimal Learning Rate (OLR)
Experiments on visual recognition demonstrate that our methods can simultaneously improve covariance conditioning and generalization.
arXiv Detail & Related papers (2022-12-11T20:31:31Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.