Gradient-based Fine-Tuning through Pre-trained Model Regularization
- URL: http://arxiv.org/abs/2507.00016v1
- Date: Sat, 14 Jun 2025 14:41:03 GMT
- Title: Gradient-based Fine-Tuning through Pre-trained Model Regularization
- Authors: Xuanbo Liu, Liu Liu, Fuxiang Wu, Fusheng Hao, Xianglong Liu,
- Abstract summary: We propose an efficient gradient-based and regularized fine-tuning method (GRFT) that updates the rows or columns of the weight matrix.<n> GRFT achieves state-of-the-art performance, surpassing existing methods such as GPS, Adapter Tuning, and LoRA.
- Score: 20.823624386591902
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large pre-trained models have demonstrated extensive applications across various fields. However, fine-tuning these models for specific downstream tasks demands significant computational resources and storage. One fine-tuning method, gradient-based parameter selection (GPS), focuses on fine-tuning only the parameters with high gradients in each neuron, thereby reducing the number of training parameters. Nevertheless, this approach increases computational resource requirements and storage demands. In this paper, we propose an efficient gradient-based and regularized fine-tuning method (GRFT) that updates the rows or columns of the weight matrix. We theoretically demonstrate that the rows or columns with the highest sum of squared gradients are optimal for updating. This strategy effectively reduces storage overhead and improves the efficiency of parameter selection. Additionally, we incorporate regularization to enhance knowledge transfer from the pre-trained model. GRFT achieves state-of-the-art performance, surpassing existing methods such as GPS, Adapter Tuning, and LoRA. Notably, GRFT requires updating only 1.22% and 0.30% of the total parameters on FGVC and VTAB datasets, respectively, demonstrating its high efficiency and effectiveness. The source code will be released soon.
Related papers
- FineGates: LLMs Finetuning with Compression using Stochastic Gates [7.093692674858257]
Large Language Models (LLMs) present significant challenges for full finetuning due to the high computational demands.<n>Lightweight finetuning techniques have been proposed, like learning low-rank adapter layers.<n>We propose an adaptor model based on gates that simultaneously sparsify the frozen base model with task-specific adaptation.
arXiv Detail & Related papers (2024-12-17T14:33:05Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) is a popular Efficient Fine Tuning (PEFT) method.<n>We propose a higher-order Candecomp/Parafac (CP) decomposition, enabling a more compact and flexible representation.<n>Our method can achieve a reduction in the number of parameters while maintaining comparable performance.
arXiv Detail & Related papers (2024-10-05T06:59:50Z) - NEAT: Nonlinear Parameter-efficient Adaptation of Pre-trained Models [26.808251361020066]
Fine-tuning pre-trained models often yields state-of-the-art performance but is computationally expensive when updating all parameters.<n>We propose NEAT, a nonlinear PEFT approach that employs a lightweight neural network to learn a nonlinear transformation of the pre-trained weights.<n>Our theoretical analysis shows that NEAT achieves greater efficiency than LoRA while maintaining equivalent expressivity.
arXiv Detail & Related papers (2024-10-02T17:29:23Z) - PACE: Marrying generalization in PArameter-efficient fine-tuning with Consistency rEgularization [35.922096876707975]
PACE is a generalization of PArameter-efficient fine-tuning with Consistency rEgularization.<n>It implicitly regularizes gradients for enhanced generalization, but also implicitly aligns the fine-tuned and pre-trained models to retain knowledge.<n>It also improves LoRA in text classification (GLUE) and mathematical reasoning.
arXiv Detail & Related papers (2024-09-25T17:56:00Z) - Enabling Efficient On-Device Fine-Tuning of LLMs Using Only Inference Engines [17.539008562641303]
Large Language Models (LLMs) are currently pre-trained and fine-tuned on large cloud servers.
Next frontier is LLM personalization, where a foundation model can be fine-tuned with user/task-specific data.
Fine-tuning on resource-constrained edge devices presents significant challenges due to substantial memory and computational demands.
arXiv Detail & Related papers (2024-09-23T20:14:09Z) - SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
In this work, we investigate the importance of parameters in pre-trained diffusion models.<n>We propose a novel model fine-tuning method to make full use of these ineffective parameters.<n>Our method enhances the generative capabilities of pre-trained models in downstream applications.
arXiv Detail & Related papers (2024-09-10T16:44:47Z) - ConvLoRA and AdaBN based Domain Adaptation via Self-Training [4.006331916849688]
We propose Convolutional Low-Rank Adaptation (ConvLoRA) for multi-target domain adaptation.
ConvLoRA freezes pre-trained model weights, adds trainable low-rank decomposition matrices to convolutional layers, and backpropagates the gradient.
Our method has fewer trainable parameters and performs better or on-par with large independent fine-tuned networks.
arXiv Detail & Related papers (2024-02-07T15:43:50Z) - Sparse is Enough in Fine-tuning Pre-trained Large Language Models [98.46493578509039]
We propose a gradient-based sparse fine-tuning algorithm, named Sparse Increment Fine-Tuning (SIFT)
We validate its effectiveness on a range of tasks including the GLUE Benchmark and Instruction-tuning.
arXiv Detail & Related papers (2023-12-19T06:06:30Z) - Winner-Take-All Column Row Sampling for Memory Efficient Adaptation of Language Model [89.8764435351222]
We propose a new family of unbiased estimators called WTA-CRS, for matrix production with reduced variance.
Our work provides both theoretical and experimental evidence that, in the context of tuning transformers, our proposed estimators exhibit lower variance compared to existing ones.
arXiv Detail & Related papers (2023-05-24T15:52:08Z) - AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning [143.23123791557245]
Fine-tuning large pre-trained language models on downstream tasks has become an important paradigm in NLP.
We propose AdaLoRA, which adaptively allocates the parameter budget among weight matrices according to their importance score.
We conduct extensive experiments with several pre-trained models on natural language processing, question answering, and natural language generation to validate the effectiveness of AdaLoRA.
arXiv Detail & Related papers (2023-03-18T22:36:25Z) - Scaling & Shifting Your Features: A New Baseline for Efficient Model
Tuning [126.84770886628833]
Existing finetuning methods either tune all parameters of the pretrained model (full finetuning) or only tune the last linear layer (linear probing)
We propose a new parameter-efficient finetuning method termed as SSF, representing that researchers only need to Scale and Shift the deep Features extracted by a pre-trained model to catch up with the performance full finetuning.
arXiv Detail & Related papers (2022-10-17T08:14:49Z) - DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language
Models [152.29364079385635]
As pre-trained models grow bigger, the fine-tuning process can be time-consuming and computationally expensive.
We propose a framework for resource- and parameter-efficient fine-tuning by leveraging the sparsity prior in both weight updates and the final model weights.
Our proposed framework, dubbed Dually Sparsity-Embedded Efficient Tuning (DSEE), aims to achieve two key objectives: (i) parameter efficient fine-tuning and (ii) resource-efficient inference.
arXiv Detail & Related papers (2021-10-30T03:29:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.