論文の概要: Learning with Dynamics: Autonomous Regulation of UAV Based Communication Networks with Dynamic UAV Crew
- arxiv url: http://arxiv.org/abs/2409.17139v1
- Date: Wed, 25 Sep 2024 17:57:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-27 02:33:29.599201
- Title: Learning with Dynamics: Autonomous Regulation of UAV Based Communication Networks with Dynamic UAV Crew
- Title(参考訳): ダイナミックなUAVクルーを用いたUAVベースの通信ネットワークの自律的制御
- Authors: Ran Zhang, Bowei Li, Liyuan Zhang, Jiang, Xie, Miao Wang,
- Abstract要約: Unmanned Aerial Vehicle (UAV) ベースの通信ネットワーク (UCN) は将来のモバイルネットワークにおいて重要なコンポーネントである。
強化学習(RL)は、環境モデルから解放された適応的な意思決定能力に起因した、有望なソリューションである。
本稿では、動的UAVセットを与えられた適応UCN制御のためのRLベースの戦略設計について述べる。
- 参考スコア(独自算出の注目度): 26.10524523749782
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unmanned Aerial Vehicle (UAV) based communication networks (UCNs) are a key component in future mobile networking. To handle the dynamic environments in UCNs, reinforcement learning (RL) has been a promising solution attributed to its strong capability of adaptive decision-making free of the environment models. However, most existing RL-based research focus on control strategy design assuming a fixed set of UAVs. Few works have investigated how UCNs should be adaptively regulated when the serving UAVs change dynamically. This article discusses RL-based strategy design for adaptive UCN regulation given a dynamic UAV set, addressing both reactive strategies in general UCNs and proactive strategies in solar-powered UCNs. An overview of the UCN and the RL framework is first provided. Potential research directions with key challenges and possible solutions are then elaborated. Some of our recent works are presented as case studies to inspire innovative ways to handle dynamic UAV crew with different RL algorithms.
- Abstract(参考訳): Unmanned Aerial Vehicle (UAV) ベースの通信ネットワーク (UCN) は将来のモバイルネットワークにおいて重要なコンポーネントである。
UCNの動的環境を扱うために、強化学習(RL)は、環境モデルのない適応的意思決定能力の強いため、有望なソリューションである。
しかし、既存のRLベースの研究のほとんどは、UAVの固定セットを想定した制御戦略設計に重点を置いている。
UAVが動的に変化するとき、UCNがどのように適応的に制御されるべきかを研究する研究はほとんどない。
本稿では, 適応型UCN制御のためのRLベースの戦略設計について論じ, 汎用UCNの反応性戦略と太陽発電UCNの積極的な戦略の両方に対処する。
UCNとRLフレームワークの概要が最初に提供される。
主要な課題と可能な解決策を持つ潜在的研究の方向性を詳述する。
最近の研究のいくつかは、RLアルゴリズムの異なる動的UAV乗組員を扱う革新的な方法を促すケーススタディとして紹介されている。
関連論文リスト
- ODRL: A Benchmark for Off-Dynamics Reinforcement Learning [59.72217833812439]
我々は、オフダイナミックスRL法を評価するための最初のベンチマークであるODRLを紹介する。
ODRLには、4つの実験的な設定が含まれており、ソースドメインとターゲットドメインはオンラインまたはオフラインにすることができる。
我々は、様々な力学シフトにまたがる普遍的な優位性を持つ手法が存在しないことを示す広範なベンチマーク実験を行った。
論文 参考訳(メタデータ) (2024-10-28T05:29:38Z) - Neural-based Control for CubeSat Docking Maneuvers [0.0]
本稿では、強化学習(RL)によって訓練されたニューラルネットワーク(ANN)を用いた革新的なアプローチを提案する。
提案した戦略は実装が容易であり、経験から制御ポリシーを学習することで、高速な適応性と障害に対する堅牢性を提供する。
本研究は、宇宙機RVDの適応性と効率の確保におけるRLの有効性を強調し、今後のミッションへの期待について考察した。
論文 参考訳(メタデータ) (2024-10-16T16:05:46Z) - Cooperative Cognitive Dynamic System in UAV Swarms: Reconfigurable Mechanism and Framework [80.39138462246034]
UAVスワムの管理を最適化するための協調認知力学システム(CCDS)を提案する。
CCDSは階層的かつ協調的な制御構造であり、リアルタイムのデータ処理と意思決定を可能にする。
さらに、CCDSは、UAVスワムのタスクを効率的に割り当てるための生体模倣機構と統合することができる。
論文 参考訳(メタデータ) (2024-05-18T12:45:00Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
本稿では,UAVを用いた協調ビームフォーミング多目的最適化問題 (UCBMOP) を定式化し,UAVの伝送速度を最大化し,全UAVのエネルギー消費を最小化する。
ヘテロジニアス・エージェント・信頼領域ポリシー最適化(HATRPO)を基本フレームワークとし,改良されたHATRPOアルゴリズム,すなわちHATRPO-UCBを提案する。
論文 参考訳(メタデータ) (2024-04-11T03:19:22Z) - Self-Inspection Method of Unmanned Aerial Vehicles in Power Plants Using
Deep Q-Network Reinforcement Learning [0.0]
本研究は,UAV自律ナビゲーションとDQN強化学習を取り入れた発電所検査システムを提案する。
訓練されたモデルは、UAVが困難な環境で単独で移動できるようにすることで、検査戦略が実際に適用される可能性が高い。
論文 参考訳(メタデータ) (2023-03-16T00:58:50Z) - DL-DRL: A double-level deep reinforcement learning approach for
large-scale task scheduling of multi-UAV [65.07776277630228]
分割・征服フレームワーク(DCF)に基づく二重レベル深層強化学習(DL-DRL)手法を提案する。
特に,上層部DRLモデルにおけるエンコーダ・デコーダ構成ポリシネットワークを設計し,タスクを異なるUAVに割り当てる。
また、低レベルDRLモデルにおける別の注意に基づくポリシーネットワークを利用して、各UAVの経路を構築し、実行されたタスク数を最大化する。
論文 参考訳(メタデータ) (2022-08-04T04:35:53Z) - Deep Reinforcement Learning for Online Routing of Unmanned Aerial
Vehicles with Wireless Power Transfer [9.296415450289706]
無人航空機(UAV)は、輸送、軍事任務、災害救助、通信など様々な用途において重要な役割を担っている。
本稿では,無線電力伝送によるUAVオンラインルーティング問題を解決するための深層強化学習手法を提案する。
論文 参考訳(メタデータ) (2022-04-25T07:43:08Z) - Optimization for Master-UAV-powered Auxiliary-Aerial-IRS-assisted IoT
Networks: An Option-based Multi-agent Hierarchical Deep Reinforcement
Learning Approach [56.84948632954274]
本稿では,無人航空機(MUAV)搭載のIoT(Internet of Things)ネットワークについて検討する。
本稿では、インテリジェント反射面(IRS)を備えた充電可能な補助UAV(AUAV)を用いて、MUAVからの通信信号を強化することを提案する。
提案モデルでは,IoTネットワークの蓄積スループットを最大化するために,これらのエネルギー制限されたUAVの最適協調戦略について検討する。
論文 参考訳(メタデータ) (2021-12-20T15:45:28Z) - Joint Cluster Head Selection and Trajectory Planning in UAV-Aided IoT
Networks by Reinforcement Learning with Sequential Model [4.273341750394231]
我々は、UAVの軌道を共同で設計し、インターネット・オブ・シングス・ネットワークでクラスタ・ヘッドを選択するという問題を定式化する。
本稿では,シーケンス・ツー・シーケンス・ニューラルネットワークで表されるポリシーを効果的に学習できるシーケンシャルモデル戦略を備えた,新しい深層強化学習(DRL)を提案する。
シミュレーションにより,提案したDRL法は,より少ないエネルギー消費を必要とするUAVの軌道を見つけることができることを示した。
論文 参考訳(メタデータ) (2021-12-01T07:59:53Z) - Artificial Intelligence Aided Next-Generation Networks Relying on UAVs [140.42435857856455]
動的環境において,人工知能(AI)による無人航空機(UAV)による次世代ネットワーク支援が提案されている。
AI対応のUAV支援無線ネットワーク(UAWN)では、複数のUAVが航空基地局として使用され、ダイナミックな環境に迅速に適応することができる。
AIフレームワークの利点として、従来のUAWNのいくつかの課題が回避され、ネットワークパフォーマンスが向上し、信頼性が向上し、アジャイル適応性が向上する。
論文 参考訳(メタデータ) (2020-01-28T15:10:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。