論文の概要: Neural-based Control for CubeSat Docking Maneuvers
- arxiv url: http://arxiv.org/abs/2410.12703v1
- Date: Wed, 16 Oct 2024 16:05:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:41:32.584124
- Title: Neural-based Control for CubeSat Docking Maneuvers
- Title(参考訳): 立方体サットドッキングマニピュレータのニューラルベース制御
- Authors: Matteo Stoisa, Federica Paganelli Azza, Luca Romanelli, Mattia Varile,
- Abstract要約: 本稿では、強化学習(RL)によって訓練されたニューラルネットワーク(ANN)を用いた革新的なアプローチを提案する。
提案した戦略は実装が容易であり、経験から制御ポリシーを学習することで、高速な適応性と障害に対する堅牢性を提供する。
本研究は、宇宙機RVDの適応性と効率の確保におけるRLの有効性を強調し、今後のミッションへの期待について考察した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Autonomous Rendezvous and Docking (RVD) have been extensively studied in recent years, addressing the stringent requirements of spacecraft dynamics variations and the limitations of GNC systems. This paper presents an innovative approach employing Artificial Neural Networks (ANN) trained through Reinforcement Learning (RL) for autonomous spacecraft guidance and control during the final phase of the rendezvous maneuver. The proposed strategy is easily implementable onboard and offers fast adaptability and robustness to disturbances by learning control policies from experience rather than relying on predefined models. Extensive Monte Carlo simulations within a relevant environment are conducted in 6DoF settings to validate our approach, along with hardware tests that demonstrate deployment feasibility. Our findings highlight the efficacy of RL in assuring the adaptability and efficiency of spacecraft RVD, offering insights into future mission expectations.
- Abstract(参考訳): 自律ランデブーとドッキング(RVD)は近年広く研究されており、宇宙船のダイナミクスの変動とGNCシステムの限界の厳密な要求に対処している。
本稿では,RL(Reinforcement Learning)を用いて訓練されたニューラルネットワーク(ANN)を用いた,ランデブー操作の最終段階における自律型宇宙船誘導と制御のための革新的なアプローチを提案する。
提案した戦略は実装が容易で,事前定義されたモデルに頼るのではなく,経験から制御ポリシを学ぶことによって,障害に対する迅速な適応性と堅牢性を提供する。
関連する環境におけるモンテカルロシミュレーションを6DoF設定で実施し、我々のアプローチを検証するとともに、デプロイメントの実現可能性を示すハードウェアテストを行う。
本研究は、宇宙機RVDの適応性と効率の確保におけるRLの有効性を強調し、今後のミッションへの期待について考察した。
関連論文リスト
- Physics Enhanced Residual Policy Learning (PERPL) for safety cruising in mixed traffic platooning under actuator and communication delay [8.172286651098027]
線形制御モデルは、その単純さ、使いやすさ、安定性解析のサポートにより、車両制御に広範囲に応用されている。
一方、強化学習(RL)モデルは適応性を提供するが、解釈可能性や一般化能力の欠如に悩まされる。
本稿では,物理インフォームドポリシによって強化されたRL制御系の開発を目標とする。
論文 参考訳(メタデータ) (2024-09-23T23:02:34Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
ゲームエンジンとDeep Reinforcement Learningの統合の最近の進歩を利用して,水上ナビゲーションのための新しいベンチマーク環境を提案する。
具体的には、最も広く受け入れられているアルゴリズムの一つであるPPOに着目し、先進的なトレーニング手法を提案する。
実験により,これらの成分をうまく組み合わせることで,有望な結果が得られることが示された。
論文 参考訳(メタデータ) (2024-05-30T23:20:23Z) - Lyapunov-stable Neural Control for State and Output Feedback: A Novel Formulation [67.63756749551924]
学習ベースのニューラルネットワーク(NN)制御ポリシは、ロボット工学と制御の幅広いタスクにおいて、印象的な経験的パフォーマンスを示している。
非線形力学系を持つNNコントローラのトラクション領域(ROA)に対するリアプノフ安定性の保証は困難である。
我々は、高速な経験的ファルシフィケーションと戦略的正則化を用いて、Lyapunov証明書とともにNNコントローラを学習するための新しいフレームワークを実証する。
論文 参考訳(メタデータ) (2024-04-11T17:49:15Z) - Sim-to-Real Transfer of Adaptive Control Parameters for AUV
Stabilization under Current Disturbance [1.099532646524593]
本稿では,最大エントロピー深層強化学習フレームワークを古典的なモデルベース制御アーキテクチャと組み合わせ,適応制御系を定式化する新しい手法を提案する。
本フレームワークでは,バイオインスパイアされた体験再生機構,拡張されたドメインランダム化手法,物理プラットフォーム上で実行される評価プロトコルなどを含むSim-to-Real転送戦略を導入する。
実験により,AUVの準最適モデルから有能なポリシを効果的に学習し,実車への移動時の制御性能を3倍に向上することを示した。
論文 参考訳(メタデータ) (2023-10-17T08:46:56Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
視覚力学モデリングのための新しい連続学習手法を提案し,その視覚制御と予測における有効性について検討する。
まず,タスク固有のダイナミクスをガウスの混合で学習する混合世界モデルを提案し,その上で,破滅的な忘れを克服するための新たなトレーニング戦略を提案する。
我々のモデルは,DeepMind Control と Meta-World のベンチマークにおいて,既存の連続的学習アルゴリズムと視覚的RLアルゴリズムの単純な組み合わせよりも優れている。
論文 参考訳(メタデータ) (2023-03-12T05:08:03Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Data-Efficient Deep Reinforcement Learning for Attitude Control of
Fixed-Wing UAVs: Field Experiments [0.37798600249187286]
DRLは、元の非線形力学を直接操作する固定翼UAVの姿勢制御をうまく学べることを示す。
我々は,UAVで学習したコントローラを飛行試験で展開し,最先端のArduPlane比例積分微分(PID)姿勢制御と同等の性能を示す。
論文 参考訳(メタデータ) (2021-11-07T19:07:46Z) - DikpolaSat Mission: Improvement of Space Flight Performance and Optimal
Control Using Trained Deep Neural Network -- Trajectory Controller for Space
Objects Collision Avoidance [0.0]
本稿では,宇宙船を所望の経路に追従させることにより,制御器の実証を行う方法について述べる。
障害回避アルゴリズムは、ニューラルネットワークからの入力を使用して自然に応答する制御機能に組み込まれる。
飛行制御と燃料消費を最適化するための複数のアルゴリズムは、軌道の飛行力学の知識を用いて実装することができる。
論文 参考訳(メタデータ) (2021-05-30T23:35:13Z) - Vision-Based Autonomous Drone Control using Supervised Learning in
Simulation [0.0]
室内環境におけるMAVの自律的ナビゲーションと着陸にSupervised Learningを用いた視覚に基づく制御手法を提案する。
我々は、低解像度画像とセンサー入力を高レベル制御コマンドにマッピングする畳み込みニューラルネットワーク(CNN)を訓練した。
我々のアプローチは、類似の強化学習アプローチよりも短いトレーニング時間を必要としており、匹敵するSupervised Learningアプローチが直面する手動データ収集の限界を克服する可能性がある。
論文 参考訳(メタデータ) (2020-09-09T13:45:41Z) - Reinforcement Learning for Low-Thrust Trajectory Design of
Interplanetary Missions [77.34726150561087]
本稿では, 惑星間軌道のロバスト設計における強化学習の適用について検討する。
最先端アルゴリズムのオープンソース実装が採用されている。
その結果得られた誘導制御ネットワークは、堅牢な名目的軌道と関連する閉ループ誘導法の両方を提供する。
論文 参考訳(メタデータ) (2020-08-19T15:22:15Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
我々は,制約付きポリシー最適化(CPPO)の実装に基づくRLフレームワークであるGCPOを紹介する。
誘導制約付きRLは所望の最適値に近い高速収束を実現し,正確な報酬関数チューニングを必要とせず,最適かつ物理的に実現可能なロボット制御動作を実現することを示す。
論文 参考訳(メタデータ) (2020-02-22T10:15:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。