Accelerating Multi-Block Constrained Optimization Through Learning to Optimize
- URL: http://arxiv.org/abs/2409.17320v1
- Date: Wed, 25 Sep 2024 19:58:29 GMT
- Title: Accelerating Multi-Block Constrained Optimization Through Learning to Optimize
- Authors: Ling Liang, Cameron Austin, Haizhao Yang,
- Abstract summary: Multi-block ADMM-type methods offer substantial reductions in per-it complexity.
MPALM shares a similar form with multi-block ADMM and ensures convergence.
MPALM's performance is highly sensitive to the choice of penalty parameters.
We propose a novel L2O approach that adaptively selects this hyperparameter using supervised learning.
- Score: 9.221883233960234
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning to Optimize (L2O) approaches, including algorithm unrolling, plug-and-play methods, and hyperparameter learning, have garnered significant attention and have been successfully applied to the Alternating Direction Method of Multipliers (ADMM) and its variants. However, the natural extension of L2O to multi-block ADMM-type methods remains largely unexplored. Such an extension is critical, as multi-block methods leverage the separable structure of optimization problems, offering substantial reductions in per-iteration complexity. Given that classical multi-block ADMM does not guarantee convergence, the Majorized Proximal Augmented Lagrangian Method (MPALM), which shares a similar form with multi-block ADMM and ensures convergence, is more suitable in this setting. Despite its theoretical advantages, MPALM's performance is highly sensitive to the choice of penalty parameters. To address this limitation, we propose a novel L2O approach that adaptively selects this hyperparameter using supervised learning. We demonstrate the versatility and effectiveness of our method by applying it to the Lasso problem and the optimal transport problem. Our numerical results show that the proposed framework outperforms popular alternatives. Given its applicability to generic linearly constrained composite optimization problems, this work opens the door to a wide range of potential real-world applications.
Related papers
- A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
We tackle the general differentiable meta learning problem that is ubiquitous in modern deep learning.
These problems are often formalized as Bi-Level optimizations (BLO)
We introduce a novel perspective by turning a given BLO problem into a ii optimization, where the inner loss function becomes a smooth distribution, and the outer loss becomes an expected loss over the inner distribution.
arXiv Detail & Related papers (2024-10-14T12:10:06Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
A machine learning (ML) model is trained to emulate a constrained optimization solver.
This paper proposes an alternative approach, in which the ML model is trained to predict dual solution estimates directly.
It enables an end-to-end training scheme is which the dual objective is as a loss function, and solution estimates toward primal feasibility, emulating a Dual Ascent method.
arXiv Detail & Related papers (2024-03-06T04:43:22Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Optimizing ADMM and Over-Relaxed ADMM Parameters for Linear Quadratic
Problems [32.04687753889809]
Alternating Direction Method of Multipliers (ADMM) has gained significant attention across a broad spectrum of machine learning applications.
We propose a general approach to optimize the value of penalty parameter, followed by a novel closed-form formula to compute the optimal relaxation parameter.
We then experimentally validate our parameter selection methods through random instantiations and diverse imaging applications.
arXiv Detail & Related papers (2024-01-01T04:01:40Z) - Multi-Agent Deep Reinforcement Learning in Vehicular OCC [14.685237010856953]
We introduce a spectral efficiency optimization approach in vehicular OCC.
We model the optimization problem as a Markov decision process (MDP) to enable the use of solutions that can be applied online.
We verify the performance of our proposed scheme through extensive simulations and compare it with various variants of our approach and a random method.
arXiv Detail & Related papers (2022-05-05T14:25:54Z) - A Convergent ADMM Framework for Efficient Neural Network Training [17.764095204676973]
Alternating Direction Method of Multipliers (ADMM) has achieved tremendous success in many classification and regression applications.
We propose a novel framework to solve a general neural network training problem via ADMM (dlADMM) to address these challenges simultaneously.
Experiments on seven benchmark datasets demonstrate the convergence, efficiency, and effectiveness of our proposed dlADMM algorithm.
arXiv Detail & Related papers (2021-12-22T01:55:24Z) - A Reinforcement Learning Approach to Parameter Selection for Distributed
Optimization in Power Systems [1.1199585259018459]
We develop an adaptive penalty parameter selection policy for the AC optimal power flow (ACOPF) problem solved via ADMM.
We show that our RL policy demonstrates promise for generalizability, performing well under unseen loading schemes as well as under unseen losses of lines and generators.
This work thus provides a proof-of-concept for using RL for parameter selection in ADMM for power systems applications.
arXiv Detail & Related papers (2021-10-22T18:17:32Z) - Optimization on manifolds: A symplectic approach [127.54402681305629]
We propose a dissipative extension of Dirac's theory of constrained Hamiltonian systems as a general framework for solving optimization problems.
Our class of (accelerated) algorithms are not only simple and efficient but also applicable to a broad range of contexts.
arXiv Detail & Related papers (2021-07-23T13:43:34Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Permutation Invariant Policy Optimization for Mean-Field Multi-Agent
Reinforcement Learning: A Principled Approach [128.62787284435007]
We propose the mean-field proximal policy optimization (MF-PPO) algorithm, at the core of which is a permutation-invariant actor-critic neural architecture.
We prove that MF-PPO attains the globally optimal policy at a sublinear rate of convergence.
In particular, we show that the inductive bias introduced by the permutation-invariant neural architecture enables MF-PPO to outperform existing competitors.
arXiv Detail & Related papers (2021-05-18T04:35:41Z) - A Framework of Inertial Alternating Direction Method of Multipliers for
Non-Convex Non-Smooth Optimization [17.553531291690025]
We propose an algorithmic framework dubbed alternating methods of multipliers (iADMM) for solving a class of non nonsmooth multiblock composite problems.
Our framework employs the general-major surrogateization (MM) principle to update each block of variables to unify the convergence analysis of previous ADMM schemes.
arXiv Detail & Related papers (2021-02-10T13:55:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.