論文の概要: Stress Detection from Photoplethysmography in a Virtual Reality Environment
- arxiv url: http://arxiv.org/abs/2409.17427v1
- Date: Wed, 25 Sep 2024 23:29:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-28 23:50:22.764066
- Title: Stress Detection from Photoplethysmography in a Virtual Reality Environment
- Title(参考訳): バーチャルリアリティ環境におけるフォトプレソグラフィーからの応力検出
- Authors: Athar Mahmoudi-Nejad, Pierre Boulanger, Matthew Guzdial,
- Abstract要約: 本稿では,非侵襲的かつ広く利用可能な生理的信号を用いて患者の精神状態を評価できる仮想現実治療プラットフォームを提案する。
ケーススタディでは,平和状態とストレス状態の2つのバイナリ分類をPSG信号を用いて検出する方法について検討した。
- 参考スコア(独自算出の注目度): 2.896648070760215
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Personalized virtual reality exposure therapy is a therapeutic practice that can adapt to an individual patient, leading to better health outcomes. Measuring a patient's mental state to adjust the therapy is a critical but difficult task. Most published studies use subjective methods to estimate a patient's mental state, which can be inaccurate. This article proposes a virtual reality exposure therapy (VRET) platform capable of assessing a patient's mental state using non-intrusive and widely available physiological signals such as photoplethysmography (PPG). In a case study, we evaluate how PPG signals can be used to detect two binary classifications: peaceful and stressful states. Sixteen healthy subjects were exposed to the two VR environments (relaxed and stressful). Using LOSO cross-validation, our best classification model could predict the two states with a 70.6% accuracy which outperforms many more complex approaches.
- Abstract(参考訳): パーソナライズド・バーチャル・リアリティー・エクスポーティング・セラピー(Personalized VR exposure therapy)は、個々の患者に適応し、より良い健康結果をもたらす治療実践である。
患者の精神状態を測定して治療を調整することは、非常に難しいが難しい課題である。
ほとんどの論文では、不正確な患者の精神状態を推定するために主観的手法を用いている。
本稿では,光胸腺造影(PPG)などの非侵襲的かつ広く利用可能な生理的信号を用いて患者の精神状態を評価できるVRET(Virtual Reality exposure therapy)プラットフォームを提案する。
ケーススタディでは,平和状態とストレス状態の2つのバイナリ分類をPSG信号を用いて検出する方法について検討した。
16名の健康な被験者が2つのVR環境に曝露された。
LOSOクロスバリデーションを用いて、我々の最良の分類モデルは、2つの状態を70.6%の精度で予測することができ、より複雑なアプローチよりも優れている。
関連論文リスト
- AI-Driven Early Mental Health Screening with Limited Data: Analyzing Selfies of Pregnant Women [32.514036618021244]
うつ病や不安障害は世界中で何百万もの人に影響を与え、精神疾患の重荷に大きく貢献する。
早期スクリーニングは、精神疾患のタイムリーな同定が治療成績を大幅に改善するので、効果的な介入に不可欠である。
本研究は、顔中心の自撮りを与えられたユビキタスな抑うつ不安スクリーニングのためのAIモデルの可能性について検討する。
論文 参考訳(メタデータ) (2024-10-07T19:34:25Z) - We Care: Multimodal Depression Detection and Knowledge Infused Mental Health Therapeutic Response Generation [41.09752906121257]
拡張D-vlogデータセットは1,261のYouTube vlogのコレクションを含む。
本稿では,認知行動療法(Cognitive Behavioral Therapy, CBT)をベースとした, メンタルヘルス患者の初期接触として機能する仮想エージェントについて紹介する。
私たちのMistralモデルは歪み評価と分類で70.1%、30.9%、ベルトスコア88.7%を達成しました。
論文 参考訳(メタデータ) (2024-06-15T08:41:46Z) - Depression Recognition using Remote Photoplethysmography from Facial
Videos [0.3867363075280544]
うつ病は個人の健康に有害な精神疾患である。
本研究は、異なるうつ状態が血液量脈(BVP)と心拍変動(HRV)に顕著な影響を及ぼすかどうかを観察するために生理的信号を分析する。
視覚情報に基づいて顔映像から直接抽出する新しい手法を提案する。
論文 参考訳(メタデータ) (2022-06-09T10:23:49Z) - Semi-Supervised Variational Reasoning for Medical Dialogue Generation [70.838542865384]
医療対話生成には,患者の状態と医師の行動の2つの重要な特徴がある。
医療対話生成のためのエンドツーエンドの変分推論手法を提案する。
行動分類器と2つの推論検出器から構成される医師政策ネットワークは、拡張推論能力のために提案される。
論文 参考訳(メタデータ) (2021-05-13T04:14:35Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
ビデオから人間のエンゲージメントレベルを知覚する学習ベースアルゴリズムMETを提案する。
我々はメンタルヘルス患者のエンゲージメント検出のための新しいデータセットMEDICAをリリースした。
論文 参考訳(メタデータ) (2020-11-17T15:18:38Z) - Collaborative Unsupervised Domain Adaptation for Medical Image Diagnosis [102.40869566439514]
我々は、Unsupervised Domain Adaptation (UDA)を通じて、対象タスクにおける学習を支援するために、関連ドメインからの豊富なラベル付きデータを活用しようとしている。
クリーンなラベル付きデータやサンプルを仮定するほとんどのUDAメソッドが等しく転送可能であるのとは異なり、協調的教師なしドメイン適応アルゴリズムを革新的に提案する。
提案手法の一般化性能を理論的に解析し,医用画像と一般画像の両方で実験的に評価する。
論文 参考訳(メタデータ) (2020-07-05T11:49:17Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z) - DTR Bandit: Learning to Make Response-Adaptive Decisions With Low Regret [59.81290762273153]
動的治療体制 (DTR) はパーソナライズされ適応された多段階の治療計画であり、治療決定を個人の初期特徴に適応させ、その後の各段階における中間結果と特徴に適応させる。
本稿では,探索と搾取を慎重にバランスさせることで,遷移モデルと報酬モデルが線形である場合に,速度-最適後悔を実現する新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-06T13:03:42Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。