論文の概要: CadVLM: Bridging Language and Vision in the Generation of Parametric CAD Sketches
- arxiv url: http://arxiv.org/abs/2409.17457v1
- Date: Thu, 26 Sep 2024 01:22:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-28 23:40:01.062376
- Title: CadVLM: Bridging Language and Vision in the Generation of Parametric CAD Sketches
- Title(参考訳): CadVLM:パラメトリックCADスケッチの生成におけるブリッジ言語とビジョン
- Authors: Sifan Wu, Amir Khasahmadi, Mor Katz, Pradeep Kumar Jayaraman, Yewen Pu, Karl Willis, Bang Liu,
- Abstract要約: CAD(Parametric Computer-Aided Design)は、現代の機械設計の中心である。
CAD生成のためのエンド・ツー・エンドの視覚言語モデルであるCadVLMを提案する。
- 参考スコア(独自算出の注目度): 24.239470848849418
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parametric Computer-Aided Design (CAD) is central to contemporary mechanical design. However, it encounters challenges in achieving precise parametric sketch modeling and lacks practical evaluation metrics suitable for mechanical design. We harness the capabilities of pre-trained foundation models, renowned for their successes in natural language processing and computer vision, to develop generative models specifically for CAD. These models are adept at understanding complex geometries and design reasoning, a crucial advancement in CAD technology. In this paper, we propose CadVLM, an end-to-end vision language model for CAD generation. Our approach involves adapting pre-trained foundation models to manipulate engineering sketches effectively, integrating both sketch primitive sequences and sketch images. Extensive experiments demonstrate superior performance on multiple CAD sketch generation tasks such as CAD autocompletion, CAD autoconstraint, and image conditional generation. To our knowledge, this is the first instance of a multimodal Large Language Model (LLM) being successfully applied to parametric CAD generation, representing a pioneering step in the field of computer-aided mechanical design.
- Abstract(参考訳): CAD(Parametric Computer-Aided Design)は、現代の機械設計の中心である。
しかし、正確なパラメトリックスケッチモデリングを実現する上での課題に遭遇し、機械設計に適した実用的な評価基準が欠如している。
我々は、自然言語処理やコンピュータビジョンで成功したことで知られる、事前学習された基礎モデルの能力を活用し、CAD専用の生成モデルを開発する。
これらのモデルは、CAD技術の重要な進歩である複雑な幾何学と設計推論を理解することに長けている。
本稿では,CAD生成のためのエンドツーエンド視覚言語モデルであるCadVLMを提案する。
提案手法では,事前学習した基礎モデルを用いて,スケッチプリミティブシーケンスとスケッチイメージを併用して,エンジニアリングスケッチを効果的に操作する。
CADオートコンプリート,CADオートコンプリート,画像条件生成などの複数のCADスケッチ生成タスクにおいて,大規模な実験により優れた性能を示す。
我々の知る限り、これはコンピュータ支援機械設計の分野における先駆的なステップとしてパラメトリックCAD生成に成功しているマルチモーダル大規模言語モデル(LLM)の最初の例である。
関連論文リスト
- Text2CAD: Text to 3D CAD Generation via Technical Drawings [45.3611544056261]
Text2CADは、生成プロセスを自動化するために調整された安定した拡散モデルを利用する新しいフレームワークである。
テキスト2CADは,高品質な3次元CADモデルに正確に変換された技術図面を効果的に生成することを示す。
論文 参考訳(メタデータ) (2024-11-09T15:12:06Z) - PS-CAD: Local Geometry Guidance via Prompting and Selection for CAD Reconstruction [86.726941702182]
再構成ネットワークPS-CADに幾何学的ガイダンスを導入する。
我々は、現在の再構成が点雲としての完備モデルと異なる曲面の幾何学を提供する。
第二に、幾何学的解析を用いて、候補面に対応する平面的プロンプトの集合を抽出する。
論文 参考訳(メタデータ) (2024-05-24T03:43:55Z) - Geometric Deep Learning for Computer-Aided Design: A Survey [85.79012726689511]
本調査では,コンピュータ支援設計における学習手法の概要について概観する。
類似性解析と検索、2Dおよび3DCADモデル合成、点雲からのCAD生成を含む。
ベンチマークデータセットとその特性の完全なリストと、この領域の研究を推進しているオープンソースコードを提供する。
論文 参考訳(メタデータ) (2024-02-27T17:11:35Z) - CAD-SIGNet: CAD Language Inference from Point Clouds using Layer-wise
Sketch Instance Guided Attention [13.227571488321358]
CADモデルの設計履歴を復元するために,エンドツーエンドでトレーニング可能な自動回帰アーキテクチャを提案する。
我々のモデルは、ポイントクラウドとCAD言語埋め込みの階層的相互注意により視覚言語表現を学習する。
CAD-SIGNetは自己回帰的な性質により、入力ポイントクラウドが与えられたCADモデルのユニークな完全な設計履歴を再構築するだけでなく、複数の可能な設計選択も提供する。
論文 参考訳(メタデータ) (2024-02-27T16:53:16Z) - PPI-NET: End-to-End Parametric Primitive Inference [24.31083483088741]
工学の応用では、線、円、弧、点を総称してプリミティブと呼ぶ。
本稿では,手書きスケッチ画像からパラメトリックプリミティブを推定するための,効率的かつ高精度なエンドツーエンド手法を提案する。
論文 参考訳(メタデータ) (2023-08-03T03:50:49Z) - AutoCAD: Automatically Generating Counterfactuals for Mitigating
Shortcut Learning [70.70393006697383]
完全自動かつタスクに依存しないCAD生成フレームワークであるAutoCADについて述べる。
本稿では,完全に自動化されたタスクに依存しないCAD生成フレームワークであるAutoCADを提案する。
論文 参考訳(メタデータ) (2022-11-29T13:39:53Z) - Vitruvion: A Generative Model of Parametric CAD Sketches [22.65229769427499]
本稿では,パラメトリックCADスケッチの生成モデルを提案する。
我々のモデルは、SketchGraphsデータセットから実世界のデザインを訓練し、スケッチをプリミティブのシーケンスとして自動回帰的に合成する。
我々は、部分スケッチ(プライマー)や手描きスケッチのイメージなど、様々な文脈でモデルを条件付けする。
論文 参考訳(メタデータ) (2021-09-29T01:02:30Z) - Using Machine Learning to Predict Engineering Technology Students'
Success with Computer Aided Design [50.591267188664666]
機械学習技術と組み合わせたデータによって、特定の学生がデザインタスクでどれだけうまく機能するかを予測する方法を示す。
初期設計シーケンスアクションを用いたモデルは,特に予測に有用であることが判明した。
これらのモデルをさらに改善することで、事前の予測が得られ、学生のフィードバックがより早く得られるようになり、学習が向上する可能性がある。
論文 参考訳(メタデータ) (2021-08-12T20:24:54Z) - Engineering Sketch Generation for Computer-Aided Design [10.732102570751392]
エンジニアリングスケッチ生成のための2つの生成モデルであるCurveGenとTurtleGenを提案する。
どちらのモデルも、スケッチ制約を解く必要なしに曲線プリミティブを生成する。
私たちは、CurveGenとTurtleGenの両方がより現実的なエンジニアリングスケッチを生成する人間の被験者を使用して知覚評価で見つける。
論文 参考訳(メタデータ) (2021-04-19T20:38:36Z) - Fusion 360 Gallery: A Dataset and Environment for Programmatic CAD
Construction from Human Design Sequences [43.57844212541765]
簡単な言語で構成されたFusion 360 Galleryを紹介します。
また,CADプログラムの逐次構築をマルコフ決定プロセスとして公開するFusion 360 Gymという対話型環境を提案する。
論文 参考訳(メタデータ) (2020-10-05T23:18:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。