Heterogeneous Hyper-Graph Neural Networks for Context-aware Human Activity Recognition
- URL: http://arxiv.org/abs/2409.17483v1
- Date: Thu, 26 Sep 2024 02:44:37 GMT
- Title: Heterogeneous Hyper-Graph Neural Networks for Context-aware Human Activity Recognition
- Authors: Wen Ge, Guanyi Mou, Emmanuel O. Agu, Kyumin Lee,
- Abstract summary: We argue that context-aware activity visit patterns in realistic in-the-wild data can be considered as a general graph representation learning task.
We propose a novel Heterogeneous HyperGraph Neural Network architecture for Context-aware Human Activity Recognition.
- Score: 2.8132886759540146
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Context-aware Human Activity Recognition (CHAR) is challenging due to the need to recognize the user's current activity from signals that vary significantly with contextual factors such as phone placements and the varied styles with which different users perform the same activity. In this paper, we argue that context-aware activity visit patterns in realistic in-the-wild data can equivocally be considered as a general graph representation learning task. We posit that exploiting underlying graphical patterns in CHAR data can improve CHAR task performance and representation learning. Building on the intuition that certain activities are frequently performed with the phone placed in certain positions, we focus on the context-aware human activity problem of recognizing the <Activity, Phone Placement> tuple. We demonstrate that CHAR data has an underlying graph structure that can be viewed as a heterogenous hypergraph that has multiple types of nodes and hyperedges (an edge connecting more than two nodes). Subsequently, learning <Activity, Phone Placement> representations becomes a graph node representation learning problem. After task transformation, we further propose a novel Heterogeneous HyperGraph Neural Network architecture for Context-aware Human Activity Recognition (HHGNN-CHAR), with three types of heterogeneous nodes (user, phone placement, and activity). Connections between all types of nodes are represented by hyperedges. Rigorous evaluation demonstrated that on an unscripted, in-the-wild CHAR dataset, our proposed framework significantly outperforms state-of-the-art (SOTA) baselines including CHAR models that do not exploit graphs, and GNN variants that do not incorporate heterogeneous nodes or hyperedges with overall improvements 14.04% on Matthews Correlation Coefficient (MCC) and 7.01% on Macro F1 scores.
Related papers
- Deep Heterogeneous Contrastive Hyper-Graph Learning for In-the-Wild Context-Aware Human Activity Recognition [2.8132886759540146]
This paper proposes a framework that captures heterogenous Context-Aware HAR (CA-HAR) hypergraph properties.
DHC-HGL handles heterogeneous CA-HAR data by innovatively.
In rigorous evaluation on two CA-HAR datasets, DHC-HGL significantly outperformed state-of-the-art baselines.
arXiv Detail & Related papers (2024-09-27T06:43:06Z) - TouchUp-G: Improving Feature Representation through Graph-Centric
Finetuning [37.318961625795204]
Graph Neural Networks (GNNs) have become the state-of-the-art approach for many high-impact, real-world graph applications.
For feature-rich graphs, a prevalent practice involves utilizing a PM directly to generate features.
This practice is suboptimal because the node features extracted from PM are graph-agnostic and prevent GNNs from fully utilizing the potential correlations between the graph structure and node features.
arXiv Detail & Related papers (2023-09-25T05:44:40Z) - Beyond the Gates of Euclidean Space: Temporal-Discrimination-Fusions and
Attention-based Graph Neural Network for Human Activity Recognition [5.600003119721707]
Human activity recognition (HAR) through wearable devices has received much interest due to its numerous applications in fitness tracking, wellness screening, and supported living.
Traditional deep learning (DL) has set a state of the art performance for HAR domain.
We propose an approach based on Graph Neural Networks (GNNs) for structuring the input representation and exploiting the relations among the samples.
arXiv Detail & Related papers (2022-06-10T03:04:23Z) - Uniting Heterogeneity, Inductiveness, and Efficiency for Graph
Representation Learning [68.97378785686723]
graph neural networks (GNNs) have greatly advanced the performance of node representation learning on graphs.
A majority class of GNNs are only designed for homogeneous graphs, leading to inferior adaptivity to the more informative heterogeneous graphs.
We propose a novel inductive, meta path-free message passing scheme that packs up heterogeneous node features with their associated edges from both low- and high-order neighbor nodes.
arXiv Detail & Related papers (2021-04-04T23:31:39Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole.
We propose a Semantic Graph Convolutional Networks (SGCN) that explores the implicit semantics by learning latent semantic-paths in graphs.
arXiv Detail & Related papers (2021-01-16T16:18:43Z) - Multi-grained Semantics-aware Graph Neural Networks [13.720544777078642]
Graph Neural Networks (GNNs) are powerful techniques in representation learning for graphs.
This work proposes a unified model, AdamGNN, to interactively learn node and graph representations.
Experiments on 14 real-world graph datasets show that AdamGNN can significantly outperform 17 competing models on both node- and graph-wise tasks.
arXiv Detail & Related papers (2020-10-01T07:52:06Z) - CatGCN: Graph Convolutional Networks with Categorical Node Features [99.555850712725]
CatGCN is tailored for graph learning when the node features are categorical.
We train CatGCN in an end-to-end fashion and demonstrate it on semi-supervised node classification.
arXiv Detail & Related papers (2020-09-11T09:25:17Z) - ConsNet: Learning Consistency Graph for Zero-Shot Human-Object
Interaction Detection [101.56529337489417]
We consider the problem of Human-Object Interaction (HOI) Detection, which aims to locate and recognize HOI instances in the form of human, action, object> in images.
We argue that multi-level consistencies among objects, actions and interactions are strong cues for generating semantic representations of rare or previously unseen HOIs.
Our model takes visual features of candidate human-object pairs and word embeddings of HOI labels as inputs, maps them into visual-semantic joint embedding space and obtains detection results by measuring their similarities.
arXiv Detail & Related papers (2020-08-14T09:11:18Z) - A Graph-based Interactive Reasoning for Human-Object Interaction
Detection [71.50535113279551]
We present a novel graph-based interactive reasoning model called Interactive Graph (abbr. in-Graph) to infer HOIs.
We construct a new framework to assemble in-Graph models for detecting HOIs, namely in-GraphNet.
Our framework is end-to-end trainable and free from costly annotations like human pose.
arXiv Detail & Related papers (2020-07-14T09:29:03Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.