論文の概要: Privacy-Preserving Redaction of Diagnosis Data through Source Code Analysis
- arxiv url: http://arxiv.org/abs/2409.17535v1
- Date: Thu, 26 Sep 2024 04:41:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-28 23:06:47.811127
- Title: Privacy-Preserving Redaction of Diagnosis Data through Source Code Analysis
- Title(参考訳): ソースコード解析による診断データのプライバシー保護
- Authors: Lixi Zhou, Lei Yu, Jia Zou, Hong Min,
- Abstract要約: 我々は、ログのリアクションのためのソースコード解析アプローチについて論じる。
本手法では,機密情報を含むログメッセージを識別するために,対応するログ文をソースコード内に配置する。
- 参考スコア(独自算出の注目度): 4.721903499874626
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Protecting sensitive information in diagnostic data such as logs, is a critical concern in the industrial software diagnosis and debugging process. While there are many tools developed to automatically redact the logs for identifying and removing sensitive information, they have severe limitations which can cause either over redaction and loss of critical diagnostic information (false positives), or disclosure of sensitive information (false negatives), or both. To address the problem, in this paper, we argue for a source code analysis approach for log redaction. To identify a log message containing sensitive information, our method locates the corresponding log statement in the source code with logger code augmentation, and checks if the log statement outputs data from sensitive sources by using the data flow graph built from the source code. Appropriate redaction rules are further applied depending on the sensitiveness of the data sources to preserve the privacy information in the logs. We conducted experimental evaluation and comparison with other popular baselines. The results demonstrate that our approach can significantly improve the detection precision of the sensitive information and reduce both false positives and negatives.
- Abstract(参考訳): ログなどの診断データにおける機密情報を保護することは、産業用ソフトウェア診断・デバッグプロセスにおいて重要な関心事である。
機密情報の識別と削除のためにログを自動的に再現するツールが数多く開発されているが、重要な診断情報(偽陽性)のリアクションや損失、機密情報の開示(偽陰性)、あるいはその両方を引き起こす深刻な制限がある。
この問題に対処するため,本稿では,ログのリアクションに対するソースコード解析手法について論じる。
センシティブな情報を含むログメッセージを識別するために,ロガーコード拡張によるソースコード中の対応するログステートメントの特定を行い,ソースコードから構築したデータフローグラフを用いて,ログステートメントがセンシティブなソースからデータを出力するかどうかをチェックする。
適切なリアクションルールは、ログ内のプライバシ情報を保存するために、データソースの機密性に応じてさらに適用される。
実験による評価と,他の人気ベースラインとの比較を行った。
その結果, 本手法は感度情報の検出精度を大幅に向上し, 偽陽性と陰性の両方を低減できることがわかった。
関連論文リスト
- Demystifying and Extracting Fault-indicating Information from Logs for Failure Diagnosis [29.800380941293277]
エンジニアは、診断のためにログ情報の2つのカテゴリを優先順位付けする。
そこで本研究では,LoFIと呼ばれる故障診断のためのログから誤検出情報を自動抽出する手法を提案する。
LoFIは全てのベースライン法を大幅な差で上回り、最高のベースライン法であるChatGPTよりもF1の25.837.9を絶対的に改善した。
論文 参考訳(メタデータ) (2024-09-20T15:00:47Z) - Log2graphs: An Unsupervised Framework for Log Anomaly Detection with Efficient Feature Extraction [1.474723404975345]
手動アノテーションの高コストと使用シナリオの動的な性質は、効果的なログ分析において大きな課題となる。
本研究では,様々なシナリオに対応するために設計されたDualGCN-LogAEと呼ばれる新しいログ特徴抽出モデルを提案する。
また,特徴抽出器に基づく教師なしログ異常検出手法であるLog2graphsを導入する。
論文 参考訳(メタデータ) (2024-09-18T11:35:58Z) - An Empirical Study of Sensitive Information in Logs [12.980238412281471]
ソフトウェアログにおける機密情報の存在は、重大なプライバシー上の懸念を生じさせる。
この研究は、複数の観点からソフトウェアログのプライバシーを包括的に分析する。
当社の調査結果は、ログのプライバシーに関するさまざまな視点に光を当て、業界の課題を明らかにしました。
論文 参考訳(メタデータ) (2024-09-17T16:12:23Z) - GLAD: Content-aware Dynamic Graphs For Log Anomaly Detection [49.9884374409624]
GLADは、システムログの異常を検出するように設計されたグラフベースのログ異常検出フレームワークである。
システムログの異常を検出するために設計されたグラフベースのログ異常検出フレームワークであるGLADを紹介する。
論文 参考訳(メタデータ) (2023-09-12T04:21:30Z) - Impact of Log Parsing on Deep Learning-Based Anomaly Detection [4.0719622481627376]
本研究では,ログ解析精度と異常検出精度との間には強い相関関係がないことを示す。
本研究は,ログ解析結果の識別可能性を示す特性として,既存の理論結果について実験的に検証する。
論文 参考訳(メタデータ) (2023-05-25T09:53:02Z) - On the Importance of Signer Overlap for Sign Language Detection [65.26091369630547]
我々は,手話検出のための現在のベンチマークデータセットは,一般化が不十分な過度に肯定的な結果であると主張している。
我々は、現在の符号検出ベンチマークデータセットに対するシグナ重なりの影響を詳細に分析することでこれを定量化する。
我々は、重複のない新しいデータセット分割を提案し、より現実的なパフォーマンス評価を可能にします。
論文 参考訳(メタデータ) (2023-03-19T22:15:05Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
本稿では,推定故障時間ウィンドウに基づくリアクティブ異常検出のための反復ログ解析手法PULLを提案する。
我々の評価では、PULLは3つの異なるデータセットで10のベンチマークベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2023-01-25T16:34:43Z) - Data-Driven Approach for Log Instruction Quality Assessment [59.04636530383049]
優れた品質特性を持つログ命令の記述方法に関するガイドラインは,広く採用されていない。
1)ログレベルの正確さを評価するための正しいログレベルの割り当てと,2)イベント記述の冗長化に必要な静的テキストの最小富度を評価する十分な言語構造である。
本手法は,F1スコア0.99の十分な言語構造を用いて,ログレベルの割当を精度0.88で正確に評価する。
論文 参考訳(メタデータ) (2022-04-06T07:02:23Z) - Log-based Anomaly Detection Without Log Parsing [7.66638994053231]
ログ解析を必要としない新しいログベースの異常検出手法であるNeuralLogを提案する。
実験の結果,提案手法はログメッセージの意味を効果的に理解できることがわかった。
全体として、NeuralLogは4つの公開データセットで0.95以上のF1スコアを獲得し、既存のアプローチを上回っている。
論文 参考訳(メタデータ) (2021-08-04T10:42:13Z) - Robust and Transferable Anomaly Detection in Log Data using Pre-Trained
Language Models [59.04636530383049]
クラウドのような大規模コンピュータシステムにおける異常や障害は、多くのユーザに影響を与える。
システム情報の主要なトラブルシューティングソースとして,ログデータの異常検出のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-23T09:17:05Z) - Self-Attentive Classification-Based Anomaly Detection in Unstructured
Logs [59.04636530383049]
ログ表現を学習するための分類法であるLogsyを提案する。
従来の方法と比較して,F1スコアの平均0.25の改善を示す。
論文 参考訳(メタデータ) (2020-08-21T07:26:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。